Hyperferritinemia-cataract syndrome

Hyperferritinemia-cataract syndrome is a disorder characterized by an excess of an iron storage protein called ferritin in the blood (hyperferritinemia) and tissues of the body. A buildup of this protein begins early in life, leading to clouding of the lenses of the eyes (cataracts). In affected individuals, cataracts usually develop in infancy, rather than after age 60 as typically occurs in the general population. Cataracts that are not removed surgically cause progressive dimming and blurriness of vision because the clouded lenses reduce and distort incoming light.

Although the hyperferritinemia in this disorder does not usually cause any health problems other than cataracts, the elevated ferritin levels in the blood can be mistaken for a sign of certain liver disorders. These conditions result in excess iron in the body and may be treated by blood-drawing. However, individuals with hyperferritinemia-cataract syndrome do not have an excess of iron, and with repeated blood draws will develop reduced iron levels leading to a low number of red blood cells (anemia). Therefore, correct diagnosis of hyperferritinemia-cataract syndrome is important to avoid unnecessary treatments or invasive test procedures such as liver biopsies.

Frequency

Hyperferritinemia-cataract syndrome has been estimated to occur in 1 in 200,000 individuals.

Causes

Hyperferritinemia-cataract syndrome is caused by mutations in the FTL gene. This gene provides instructions for making the ferritin light chain, which is one part (subunit) of the protein ferritin. Ferritin is made up of 24 subunits formed into a hollow spherical molecule. The 24 subunits consist of varying numbers of the ferritin light chain and another subunit called the ferritin heavy chain, which is produced from another gene. The proportion of the two subunits varies in different tissues.

Ferritin stores and releases iron in cells. Each ferritin molecule can hold as many as 4,500 iron atoms inside its spherical structure. This storage capacity allows ferritin to regulate the amount of iron in cells and tissues.

The mutations that cause hyperferritinemia-cataract syndrome are found in a segment of the gene called the iron responsive element (IRE). The IRE normally can attach (bind) to a protein called the iron regulatory protein (IRP). When this binding occurs, the activity (expression) of the FTL gene is stopped to prevent too much ferritin light chain from being produced. This normally occurs when iron levels are low, because under those circumstances less ferritin is needed to store the iron. Mutations in the IRE segment of the FTL gene prevent it from binding with IRP, interfering with the
mechanism by which ferritin production is matched to iron levels and resulting in excess ferritin being formed.

Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Other Names for This Condition

- Bonneau-Beaumont syndrome
- hereditary hyperferritinemia-cataract syndrome
- hereditary hyperferritinemia with congenital cataracts
- HHCS

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
- Genetic Testing Registry: Hyperferritinemia cataract syndrome

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22hyperferritinemia-cataract+syndrome%22+OR+%22hereditary+cataracts%22+OR+%22hyperferritinemia%22

Other Diagnosis and Management Resources

- Boston Children's Hospital: Cataracts in Children
 http://www.childrenshospital.org/conditions-and-treatments/conditions/c/cataracts
- MedlinePlus Encyclopedia: Cataract Removal
 https://medlineplus.gov/ency/article/002957.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Cataract Removal
 https://medlineplus.gov/ency/article/002957.htm
- Encyclopedia: Congenital Cataract
 https://medlineplus.gov/ency/article/001615.htm
- Encyclopedia: Ferritin
 https://medlineplus.gov/ency/article/003490.htm
• Health Topic: Cataract
 https://medlineplus.gov/cataract.html

• Health Topic: Iron
 https://medlineplus.gov/iron.html

Genetic and Rare Diseases Information Center
• Hyperferritinemia cataract syndrome

Additional NIH Resources
• National Eye Institute: Cataracts

Educational Resources
• Orphanet: Hereditary hyperferritinemia-cataract syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=163
• The University of Arizona Health Sciences
 https://disorders.eyes.arizona.edu/handouts/hyperferritinemia-cataract-syndrome

Patient Support and Advocacy Resources
• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/hyperferritinemia-cataract-syndrome/

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Iron+Metabolism+Disorders%5BMajor%5D%29+AND+%28%28hyperferritinemia-cataract+syndrome%5BTIAB%5D%29+OR+%28hhcs%5BTIAB%5D%29%29+AND+english%5BLanguage%5D+AND+human%5BMedgen%5D+AND+%22last+3600+days%22%5BDate%5D

Catalog of Genes and Diseases from OMIM
• HYPERFERRITINEMIA WITH OR WITHOUT CATARACT
 http://omim.org/entry/600886

Medical Genetics Database from MedGen
• Hyperferritinemia cataract syndrome
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15842597

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11923255

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12401313

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15737888

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17572344

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16215440

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16496261

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12416730

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20511138
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525215/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12547247

Reprinted from Genetics Home Reference:

Reviewed: August 2012
Published: November 12, 2019