Hutchinson-Gilford progeria syndrome

Hutchinson-Gilford progeria syndrome is a genetic condition characterized by the dramatic, rapid appearance of aging beginning in childhood. Affected children typically look normal at birth and in early infancy, but then grow more slowly than other children and do not gain weight at the expected rate (failure to thrive). They develop a characteristic facial appearance including prominent eyes, a thin nose with a beaked tip, thin lips, a small chin, and protruding ears. Hutchinson-Gilford progeria syndrome also causes hair loss (alopecia), aged-looking skin, joint abnormalities, and a loss of fat under the skin (subcutaneous fat). This condition does not affect intellectual development or the development of motor skills such as sitting, standing, and walking.

People with Hutchinson-Gilford progeria syndrome experience severe hardening of the arteries (arteriosclerosis) beginning in childhood. This condition greatly increases the chances of having a heart attack or stroke at a young age. These serious complications can worsen over time and are life-threatening for affected individuals.

Frequency

This condition is very rare; it is reported to occur in 1 in 4 million newborns worldwide. More than 130 cases have been reported in the scientific literature since the condition was first described in 1886.

Genetic Changes

Mutations in the \textit{LMNA} gene cause Hutchinson-Gilford progeria syndrome. The \textit{LMNA} gene provides instructions for making a protein called lamin A. This protein plays an important role in determining the shape of the nucleus within cells. It is an essential scaffolding (supporting) component of the nuclear envelope, which is the membrane that surrounds the nucleus. Mutations that cause Hutchinson-Gilford progeria syndrome result in the production of an abnormal version of the lamin A protein. The altered protein makes the nuclear envelope unstable and progressively damages the nucleus, making cells more likely to die prematurely. Researchers are working to determine how these changes lead to the characteristic features of Hutchinson-Gilford progeria syndrome.

Inheritance Pattern

Hutchinson-Gilford progeria syndrome is considered an autosomal dominant condition, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The condition results from new mutations in the \textit{LMNA} gene, and almost always occurs in people with no history of the disorder in their family.
Other Names for This Condition

- HGPS
- Hutchinson-Gilford syndrome
- progeria
- progeria of childhood

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Hutchinson-Gilford progeria syndrome, atypical
- Genetic Testing Registry: Hutchinson-Gilford progeria syndrome, childhood-onset
- Genetic Testing Registry: Hutchinson-Gilford syndrome

Other Diagnosis and Management Resources

- GeneReview: Hutchinson-Gilford Progeria Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1121
- MedlinePlus Encyclopedia: Progeria
 https://medlineplus.gov/ency/article/001657.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html
Additional Information & Resources

MedlinePlus
- Encyclopedia: Progeria
 https://medlineplus.gov/ency/article/001657.htm
- Health Topic: Atherosclerosis
 https://medlineplus.gov/atherosclerosis.html
- Health Topic: Metabolic Disorders
 https://medlineplus.gov/metabolicdisorders.html

Genetic and Rare Diseases Information Center
- Progeria
 https://rarediseases.info.nih.gov/diseases/7467/progeria

Additional NIH Resources
- National Human Genome Research Institute
 https://www.genome.gov/11007255/

Educational Resources
- Disease InfoSearch: Progeria
 http://www.diseaseinfosearch.org/Progeria/5969
- MalaCards: hutchinson-gilford progeria syndrome
 http://www.malacards.org/card/hutchinson_gilford_progeria_syndrome
- Merck Manual Professional Version
- Orphanet: Hutchinson-Gilford progeria syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=740

Patient Support and Advocacy Resources
- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/hutchinson-gilford-progeria/
- Progeria Research Foundation, Inc.
 https://www.progeriaresearch.org
- Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/progeria.html

GeneReviews
- Hutchinson-Gilford Progeria Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1121
ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22hutchinson-gilford+progeria+syr
 drome%22

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Progeria%5BMAJR%5D%29+AND+%28Hutchin
 son-Gilford%5BTIAB%5D%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+144
 0+days%22%5Bdp%5D

OMIM
• HUTCHINSON-GILFORD PROGERIA SYNDROME
 http://omim.org/entry/176670

MedGen
• Hutchinson-Gilford progeria syndrome, childhood-onset
• Hutchinson-Gilford syndrome

Sources for This Summary
• De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Bocca
 cccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N. Lam
 in a truncation in Hutchinson-Gilford progeria. Science. 2003 Jun 27;300
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12702809
 CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glo
 ver TW, Collins FS. Recurrent de novo point mutations in lamin A cause Huc
 2003 Apr 25.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12714972
• Ghosh S, Zhou Z. Genetics of aging, progeria and lamin disorders. Curr Opin Genet
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25005744
• Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gru
 enbaum Y, Khuon S, Mendez M, Varga R, Collins FS. Accumulation of mutant lam
 in A causes progressive changes in nuclear architecture in Hutchinson-Gilf
 b 2004 Jun 7.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15184648
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PM
 C428455/
• Gonzalez JM, Pla D, Perez-Sala D, Andres V. A-type lamins and Hutchinson-Gilf
 ord progeria syndrome: pathogenesis and therapy. Front Biosci (Schol Ed). 2011
 Jun 1;3:1133-46. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21622261
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301300

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17301031

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16838330

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15479179

Reprinted from Genetics Home Reference:

Reviewed: May 2016
Published: July 31, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services