Glycoprotein VI deficiency

Glycoprotein VI deficiency is a bleeding disorder associated with a decreased ability to form blood clots. Normally, blood clots protect the body after an injury by sealing off damaged blood vessels and preventing further blood loss. Because people with glycoprotein VI deficiency cannot form blood clots normally, they have an increased risk of nosebleeds (epistaxis) and may experience abnormally heavy or prolonged bleeding following minor injury or surgery. In some affected individuals, spontaneous bleeding under the skin causes areas of discoloration (ecchymosis). Women with glycoprotein VI deficiency often have heavy or prolonged menstrual periods (menorrhagia).

Frequency

The prevalence of glycoprotein VI deficiency is unknown. At least 15 cases have been described in the scientific literature.

Causes

Glycoprotein VI deficiency can be caused by mutations in the GP6 gene, which provides instructions for making a protein called glycoprotein VI (GPVI). This protein is embedded in the outer membrane of blood cells called platelets, which are an essential component of blood clots. In response to an injury that causes bleeding, the GPVI protein begins clot formation by attaching (binding) to another protein called collagen that is found on blood vessel walls. The binding of GPVI to collagen also signals additional platelets to come together to increase the size of the clot.

GP6 gene mutations can lead to the production of no GPVI protein; an abnormally short, nonfunctional GPVI protein; or a protein that is less able to bind to collagen. Without GPVI binding to collagen, platelets cannot come together efficiently to form a clot, leading to the bleeding problems associated with glycoprotein VI deficiency.

Some cases of glycoprotein VI deficiency are not caused by GP6 gene mutations; instead these cases are acquired, which means they do not appear to be caused by inherited gene mutations. These acquired cases of glycoprotein VI deficiency are associated with autoimmune disorders such as immune thrombocytopenia purpura, Graves disease, or systemic lupus erythematosus (SLE). Autoimmune disorders occur when the immune system malfunctions and attacks the body’s own cells and tissues. Some individuals with these autoimmune disorders produce immune proteins called antibodies that attack and destroy the GPVI protein. As a result, there is a shortage (deficiency) of functional GPVI protein on the surface of platelets, which leads to bleeding problems characteristic of glycoprotein VI deficiency.
Inheritance Pattern
When this condition is caused by mutations in the GP6 gene, it is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition
- BDPLT11
- bleeding diathesis due to a collagen receptor defect
- bleeding disorder, platelet-type, 11
- GP VI deficiency

Diagnosis & Management
Genetic Testing Information
- What is genetic testing? https://primer/testing/genetictesting

Other Diagnosis and Management Resources

Additional Information & Resources
Health Information from MedlinePlus
- Encyclopedia: Bleeding Disorders https://medlineplus.gov/ency/article/001304.htm
- Health Topic: Bleeding Disorders https://medlineplus.gov/bleedingdisorders.html

Genetic and Rare Diseases Information Center
- Glycoprotein VI deficiency https://rarediseases.info.nih.gov/diseases/13293/glycoprotein-vi-deficiency
Educational Resources

- American Society of Hematology: Bleeding Disorders
 https://www.hematology.org/education/patients/bleeding-disorders
- Centers for Disease Control and Prevention: Bleeding Disorders in Women
 https://www.cdc.gov/features/bleedingdisorder/
- MalaCards: bleeding disorder, platelet-type, 11
 https://www.malacards.org/card/bleeding_disorder_platelet_type_11
- Merck Manual Consumer Version: Bleeding and Bruising
 https://www.merckmanuals.com/home/blood-disorders/blood-clotting-process/how-blood-clots
- Orphanet: Bleeding diathesis due to a collagen receptor defect
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=73271
- WomensHealth.gov: Bleeding Disorders Fact Sheet
 https://www.womenshealth.gov/a-z-topics/bleeding-disorders

Patient Support and Advocacy Resources

- Foundation for Women and Girls with Blood Disorders
 https://www.fwgbd.org/
- National Hemophilia Foundation: Bleeding Disorders
 https://www.hemophilia.org/Bleeding-Disorders

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28glycoprotein%28VI%29%29+AND+%28deficiency%29+AND+human%29+AND+%22last+3600+days%22+AND+english
 %5Bl%5D+AND+human%5Bm%5D+AND+%22last+3600+days%22+AND+english
 %5Bl%5D+AND+human%5Bm%5D+AND+english
 %5Bl%5D+AND+human%5Bm%5D

Catalog of Genes and Diseases from OMIM

- BLEEDING DISORDER, PLATELET-TYPE, 11
 http://omim.org/entry/614201

Medical Genetics Database from MedGen

- Platelet-type bleeding disorder 11
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17910626

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20644114

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19549989

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19552682

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23815599

Reprinted from Genetics Home Reference:

Reviewed: April 2017
Published: June 9, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services