Genetic Conditions

Glycogen storage disease type V

Glycogen storage disease type V (also known as GSDV or McArdle disease) is an inherited disorder caused by an inability to break down a complex sugar called glycogen in muscle cells. A lack of glycogen breakdown interferes with the function of muscle cells.

People with GSDV typically experience fatigue, muscle pain, and cramps during the first few minutes of exercise (exercise intolerance). Exercise such as weight lifting or jogging usually triggers these symptoms in affected individuals. The discomfort is generally alleviated with rest. If individuals rest after brief exercise and wait for their pain to go away, they can usually resume exercising with little or no discomfort (a characteristic phenomenon known as “second wind”).

Prolonged or intense exercise can cause muscle damage in people with GSDV. About half of people with GSDV experience breakdown of muscle tissue (rhabdomyolysis). In severe episodes, the destruction of muscle tissue releases a protein called myoglobin, which is filtered through the kidneys and released in the urine (myoglobinuria). Myoglobin causes the urine to be red or brown. This protein can also damage the kidneys, and it is estimated that half of those individuals with GSDV who have myoglobinuria will develop life-threatening kidney failure.

The signs and symptoms of GSDV can vary significantly in affected individuals. The features of this condition typically begin in a person's teens or twenties, but they can appear anytime from infancy to adulthood. In most people with GSDV, the muscle weakness worsens over time; however, in about one-third of affected individuals, the muscle weakness is stable. Some people with GSDV experience mild symptoms such as poor stamina; others do not experience any symptoms.

Frequency

GSDV is a rare disorder; however, its prevalence is unknown. In the Dallas-Fort Worth area of Texas, where the prevalence of GSDV has been studied, the condition is estimated to affect 1 in 100,000 individuals.

Causes

Mutations in the PYGM gene cause GSDV. The PYGM gene provides instructions for making an enzyme called myophosphorylase. This enzyme is found only in muscle cells, where it breaks down glycogen into a simpler sugar called glucose-1-phosphate. Additional steps convert glucose-1-phosphate into glucose, a simple sugar that is the main energy source for most cells.
PYGM gene mutations prevent myophosphorylase from breaking down glycogen effectively. As a result, muscle cells cannot produce enough energy, so muscles become easily fatigued. Reduced energy production in muscle cells leads to the major features of GSDV.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- glycogen storage disease type 5
- glycogenosis 5
- GSD type V
- GSD V
- McArdle disease
- McArdle syndrome
- McArdle type glycogen storage disease
- McArdle’s disease
- muscle glycogen phosphorylase deficiency
- muscle phosphorylase deficiency
- myophosphorylase deficiency
- PYGM deficiency

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Glycogen storage disease, type V

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22glycogen+storage+disease+type+V%22
Other Diagnosis and Management Resources

- GeneReview: Glycogen Storage Disease Type V
 https://www.ncbi.nlm.nih.gov/books/NBK1344
- MedlinePlus Encyclopedia: McArdle syndrome
 https://medlineplus.gov/ency/article/000329.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Fatigue
 https://medlineplus.gov/ency/article/003088.htm
- Encyclopedia: McArdle syndrome
 https://medlineplus.gov/ency/article/000329.htm
- Encyclopedia: Rhabdomyolysis
 https://medlineplus.gov/ency/article/000473.htm
- Health Topic: Carbohydrate Metabolism Disorders
 https://medlineplus.gov/carbohydratemetabolismdisorders.html

Genetic and Rare Diseases Information Center

- Glycogen storage disease type 5

Educational Resources

- Merck Manual Consumer Version: Overview of Hereditary Metabolic Disorders
- Muscular Dystrophy Association: Phosphorylase Deficiency
 https://www.mda.org/disease/metabolic-myopathies/types/mcardle-disease
- Muscular Dystrophy Canada: Types of Neuromuscular Disorders
 http://muscle.ca/discover-md/types-of-neuromuscular-disorders/
- Orphanet: Glycogen storage disease due to muscle glycogen phosphorylase deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=368
- Washington University, St. Louis: Neuromuscular Disease Center
 https://neuromuscular.wustl.edu/msys/glycogen.html#McA
Patient Support and Advocacy Resources

- Metabolic Support UK
 https://www.metabolicsupportuk.org/
- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/glycogen-storage-disease-type-v/
- The Association for Glycogen Storage Disease (UK)
- The Association for Glycogen Storage Disease (US)
 https://www.agsdus.org/type-v.php
- University of Kansas Medical Center Resource List
 http://www.kumc.edu/gec/support/glycogen.html

Clinical Information from GeneReviews

- Glycogen Storage Disease Type V
 https://www.ncbi.nlm.nih.gov/books/NBK1344

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28glycogen+storage+disease+type+V%5BTIAB%5D%29+OR+%28McArdle+disease%5BTIAB%5D%29+OR+%28GSDV%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- GLYCOGEN STORAGE DISEASE V
 http://omim.org/entry/232600

Medical Genetics Database from MedGen

- Glycogen storage disease, type V

Sources for This Summary

Reviewed: June 2014
Published: September 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services