Glutathione synthetase deficiency

Glutathione synthetase deficiency is a disorder that prevents the production of an important molecule called glutathione. Glutathione helps prevent damage to cells by neutralizing harmful molecules generated during energy production. Glutathione also plays a role in processing medications and cancer-causing compounds (carcinogens), and building DNA, proteins, and other important cellular components.

Glutathione synthetase deficiency can be classified into three types: mild, moderate, and severe. Mild glutathione synthetase deficiency usually results in the destruction of red blood cells (hemolytic anemia). In addition, affected individuals may release large amounts of a compound called 5-oxoproline in their urine (5-oxoprolinuria). This compound builds up when glutathione is not processed correctly in cells.

Individuals with moderate glutathione synthetase deficiency may experience symptoms beginning shortly after birth including hemolytic anemia, 5-oxoprolinuria, and elevated acidity in the blood and tissues (metabolic acidosis).

In addition to the features present in moderate glutathione synthetase deficiency, individuals affected by the severe form of this disorder may experience neurological symptoms. These problems may include seizures; a generalized slowing down of physical reactions, movements, and speech (psychomotor retardation); intellectual disability; and a loss of coordination (ataxia). Some people with severe glutathione synthetase deficiency also develop recurrent bacterial infections.

Frequency

Glutathione synthetase deficiency is very rare. This disorder has been described in more than 70 people worldwide.

Causes

Mutations in the GSS gene cause glutathione synthetase deficiency. The GSS gene provides instructions for making an enzyme called glutathione synthetase. This enzyme is involved in a process called the gamma-glutamyl cycle, which takes place in most of the body's cells. This cycle is necessary for producing a molecule called glutathione. Glutathione protects cells from damage caused by unstable oxygen-containing molecules, which are byproducts of energy production. Glutathione is called an antioxidant because of its role in protecting cells from the damaging effects of these unstable molecules. Mutations in the GSS gene prevent cells from making adequate levels of glutathione, leading to the signs and symptoms of glutathione synthetase deficiency.
Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- 5-oxoprolinemia
- 5-oxoprolinuria
- deficiency of glutathione synthase
- deficiency of glutathione synthetase
- pyroglutamic acidemia
- pyroglutamic aciduria

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22glutathione+synthetase+deficiency%22

Other Diagnosis and Management Resources

- Baby's First Test
 https://www.babysfirsttest.org/newborn-screening/conditions/pyroglutamic-acidemia
Additional Information & Resources

Health Information from MedlinePlus
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
- Health Topic: Metabolic Disorders
 https://medlineplus.gov/metabolicdisorders.html
- Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html

Genetic and Rare Diseases Information Center
- Glutathione synthetase deficiency
 https://rarediseases.info.nih.gov/diseases/10047/glutathione-synthetase-deficiency

Educational Resources
- Basic Neurochemistry (sixth edition, 1999): Glutathione Metabolism
 https://www.ncbi.nlm.nih.gov/books/NBK28123/
- Illinois Department of Public Health Newborn Screening Program
 http://www.idph.state.il.us/HealthWellness/fs/5oxy.htm
- MalaCards: glutathione synthetase deficiency
 https://www.malacards.org/card/glutathione_synthetase_deficiency
- Orphanet: Glutathione synthetase deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=32

Patient Support and Advocacy Resources
- Metabolic Support UK
 https://www.metabolicsupportuk.org/
- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/glutathione-synthetase-deficiency/
- Organic Acidemia Association
 https://www.oaanews.org/5-oxoprolinemia.html

Scientific Articles on PubMed
- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28glutathione+synthetase+deficiency%5BTIAB%5D%29+OR+%285-oxoprolinuria%5BTIAB%5D%29+OR+%28pyroglutamic+acidemia%5BTIAB%5D%29+OR+%28pyroglutamic+aciduria%5BTIAB%5D%29+OR+%285-oxoprolinemia%5BTIAB%5D%29%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+2520+days%22+AND+5%5Bdp%5D
GLUTATHIONE SYNTHETASE DEFICIENCY
http://omim.org/entry/266130

GLUTATHIONE SYNTHETASE DEFICIENCY OF ERYTHROCYTES,
HEMOLYTIC ANEMIA DUE TO
http://omim.org/entry/231900

Sources for This Summary

• Al-Jishi E, Meyer BF, Rashed MS, Al-Essa M, Al-Hamed MH, Sakati N, Sanjad S, Ozand PT,
Kambouris M. Clinical, biochemical, and molecular characterization of patients with glutathione
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10450861

• Ben Ameur S, Aloulou H, Nasrallah F, Kamoun T, Kaabachi N, Hachicha M. Hemolytic anemia and
metabolic acidosis: think about glutathione synthetase deficiency. Fetal Pediatr Pathol. 2015 Feb;
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25166299

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15981742

• Njålsson R, Ristoff E, Carlsson K, Winkler A, Larsson A, Norgren S. Genotype, enzyme activity,
glutathione level, and clinical phenotype in patients with glutathione synthetase deficiency. Hum
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15717202

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15990954

• Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar
30;2:16. Review.
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17397529
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852094/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14988435

Reprinted from Genetics Home Reference:

Reviewed: March 2015
Published: October 9, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services