Glutaric acidemia type II

Glutaric acidemia type II is an inherited disorder that interferes with the body's ability to break down proteins and fats to produce energy. Incompletely processed proteins and fats can build up in the body and cause the blood and tissues to become too acidic (metabolic acidosis).

Glutaric acidemia type II usually appears in infancy or early childhood as a sudden episode called a metabolic crisis, in which acidosis and low blood sugar (hypoglycemia) cause weakness, behavior changes such as poor feeding and decreased activity, and vomiting. These metabolic crises, which can be life-threatening, may be triggered by common childhood illnesses or other stresses.

In the most severe cases of glutaric acidemia type II, affected individuals may also be born with physical abnormalities. These may include brain malformations, an enlarged liver (hepatomegaly), a weakened and enlarged heart (dilated cardiomyopathy), fluid-filled cysts and other malformations of the kidneys, unusual facial features, and genital abnormalities. Glutaric acidemia type II may also cause a characteristic odor resembling that of sweaty feet.

Some affected individuals have less severe symptoms that begin later in childhood or in adulthood. In the mildest forms of glutaric acidemia type II, muscle weakness developing in adulthood may be the first sign of the disorder.

Frequency

Glutaric acidemia type II is a very rare disorder; its precise incidence is unknown. It has been reported in several different ethnic groups.

Causes

Mutations in any of three genes, \textit{ETFA}, \textit{ETFB}, and \textit{ETFDH}, can result in glutaric acidemia type II. The \textit{ETFA} and \textit{ETFB} genes provide instructions for producing two protein segments, or subunits, that come together to make an enzyme called electron transfer flavoprotein. The \textit{ETFDH} gene provides instructions for making another enzyme called electron transfer flavoprotein dehydrogenase.

Glutaric acidemia type II is caused by a deficiency in either of these two enzymes. Electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase are normally active in the mitochondria, which are the energy-producing centers of cells. These enzymes help break down proteins and fats to provide energy for the body. When one of the enzymes is defective or missing, partially broken down nutrients accumulate in the cells and damage them, causing the signs and symptoms of glutaric acidemia type II.
People with mutations that result in a complete loss of either enzyme produced from the ETFA, ETFB or ETFDH genes are likely to experience the most severe symptoms of glutaric acidemia type II. Mutations that allow the enzyme to retain some activity may result in milder forms of the disorder.

Inheritance Pattern
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition
- electron transfer flavoprotein deficiency
- EMA
- ETFA deficiency
- ETFB deficiency
- ETFDH deficiency
- ethylmalonic-adipicaciduria
- GA II
- glutaric acidemia, type 2
- glutaric aciduria, type 2
- MAD
- MADD
- multiple acyl-CoA dehydrogenase deficiency
- multiple FAD dehydrogenase deficiency

Diagnosis & Management
Genetic Testing Information
- What is genetic testing? /primer/testing/genetictesting

Research Studies from ClinicalTrials.gov
- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22glutaric+acidemia+type+2%22
Other Diagnosis and Management Resources

• Baby's First Test
 https://www.babysfirsttest.org/newborn-screening/conditions/glutaric-acidemia-type-ii

Additional Information & Resources

Health Information from MedlinePlus

• Health Topic: Mitochondrial Diseases
 https://medlineplus.gov/mitochondrialdiseases.html

• Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html

Genetic and Rare Diseases Information Center

• Glutaric acidemia type II
 https://rarediseases.info.nih.gov/diseases/6523/glutaric-acidemia-type-ii

Educational Resources

• Orphanet: Multiple acyl-CoA dehydrogenase deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=26791

• Screening, Technology and Research in Genetics
 http://www.newbornscreening.info/Parents/fattyaciddisorders/GA2.html

Patient Support and Advocacy Resources

• FOD (Fatty Oxidation Disorders) Family Support Group
 https://fodsupport.org/

• Metabolic Support UK
 https://www.metabolicsupportuk.org/

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/glutaricaciduria-ii/

• Organic Acidemia Association
 https://www.oaanews.org/

• United Mitochondrial Disease Foundation
 https://www.umdf.org/

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28glutaric+acidemia+type+2%5BALL%5D%29+OR+%28glutaric+acidemia+type+II%5BALL%5D%29+AND+%28Metabolic+Diseases%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D
Catalog of Genes and Diseases from OMIM

- MULTIPLE ACYL-CoA DEHYDROGENASE DEFICIENCY
 http://omim.org/entry/231680

Sources for This Summary

- OMIM: MULTIPLE ACYL-CoA DEHYDROGENASE DEFICIENCY
 http://omim.org/entry/231680

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16510302
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15907213
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1159171/

Reprinted from Genetics Home Reference:

Reviewed: February 2014
Published: March 19, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services