Glucose-6-phosphate dehydrogenase deficiency

Glucose-6-phosphate dehydrogenase deficiency is a genetic disorder that occurs almost exclusively in males. This condition mainly affects red blood cells, which carry oxygen from the lungs to tissues throughout the body. In affected individuals, a defect in an enzyme called glucose-6-phosphate dehydrogenase causes red blood cells to break down prematurely. This destruction of red blood cells is called hemolysis.

The most common medical problem associated with glucose-6-phosphate dehydrogenase deficiency is hemolytic anemia, which occurs when red blood cells are destroyed faster than the body can replace them. This type of anemia leads to paleness, yellowing of the skin and whites of the eyes (jaundice), dark urine, fatigue, shortness of breath, and a rapid heart rate. In people with glucose-6-phosphate dehydrogenase deficiency, hemolytic anemia is most often triggered by bacterial or viral infections or by certain drugs (such as some antibiotics and medications used to treat malaria). Hemolytic anemia can also occur after eating fava beans or inhaling pollen from fava plants (a reaction called favism).

Glucose-6-phosphate dehydrogenase deficiency is also a significant cause of mild to severe jaundice in newborns. Many people with this disorder, however, never experience any signs or symptoms and are unaware that they have the condition.

Frequency

An estimated 400 million people worldwide have glucose-6-phosphate dehydrogenase deficiency. This condition occurs most frequently in certain parts of Africa, Asia, the Mediterranean, and the Middle East. It affects about 1 in 10 African American males in the United States.

Genetic Changes

Glucose-6-phosphate dehydrogenase deficiency results from mutations in the G6PD gene. This gene provides instructions for making an enzyme called glucose-6-phosphate dehydrogenase. This enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the effects of potentially harmful molecules called reactive oxygen species, which are byproducts of normal cellular functions. Chemical reactions involving glucose-6-phosphate dehydrogenase produce compounds that prevent reactive oxygen species from building up to toxic levels within red blood cells.

If mutations in the G6PD gene reduce the amount of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective role. As a result, reactive oxygen species can accumulate and damage red blood cells. Factors such as infections, certain drugs, or ingesting fava beans can increase the
levels of reactive oxygen species, causing red blood cells to be destroyed faster than
the body can replace them. A reduction in the number of red blood cells causes the
signs and symptoms of hemolytic anemia.

Researchers believe that people who have a G6PD mutation may be partially protected
against malaria, an infectious disease carried by a certain type of mosquito. A reduction
in the amount of functional glucose-6-phosphate dehydrogenase appears to make
it more difficult for this parasite to invade red blood cells. Glucose-6-phosphate
dehydrogenase deficiency occurs most frequently in areas of the world where malaria is
common.

Inheritance Pattern

This condition is inherited in an X-linked recessive pattern. The gene associated
with this condition is located on the X chromosome, which is one of the two sex
chromosomes. In males (who have only one X chromosome), one altered copy of
the gene in each cell is sufficient to cause the condition. In females (who have two X
chromosomes), a mutation would have to occur in both copies of the gene to cause the
disorder. Because it is unlikely that females will have two altered copies of this gene,
males are affected by X-linked recessive disorders much more frequently than females.
A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their
sons.

Other Names for This Condition

- deficiency of glucose-6-phosphate dehydrogenase
- G6PD deficiency
- G6PDD
- glucose 6 phosphate dehydrogenase deficiency

Diagnosis & Management

Formal Treatment/Management Guidelines

- National Guideline Clearinghouse: Clinical Pharmacogenetics Implementation
 Consortium (CPIC) Guidelines for Rasburicase Therapy in the Context of G6PD
 Deficiency Genotype
 https://www.guideline.gov/summaries/summary/48785/

Genetic Testing

- Genetic Testing Registry: Glucose 6 phosphate dehydrogenase deficiency
Other Diagnosis and Management Resources

- Baby's First Test
 http://www.babysfirsttest.org/newborn-screening/conditions/glucose-6-phosphate-dehydrogenase-deficiency
- MedlinePlus Encyclopedia: Glucose-6-phosphate dehydrogenase deficiency
 https://medlineplus.gov/ency/article/000528.htm
- MedlinePlus Encyclopedia: Glucose-6-phosphate dehydrogenase test
 https://medlineplus.gov/ency/article/003671.htm
- MedlinePlus Encyclopedia: Hemolytic anemia
 https://medlineplus.gov/ency/article/000571.htm
- MedlinePlus Encyclopedia: Newborn jaundice
 https://medlineplus.gov/ency/article/001559.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Glucose-6-phosphate dehydrogenase deficiency
 https://medlineplus.gov/ency/article/000528.htm
- Encyclopedia: Glucose-6-phosphate dehydrogenase test
 https://medlineplus.gov/ency/article/003671.htm
- Encyclopedia: Hemolytic anemia
 https://medlineplus.gov/ency/article/000571.htm
- Encyclopedia: Newborn jaundice
 https://medlineplus.gov/ency/article/001559.htm
- Health Topic: Anemia
 https://medlineplus.gov/anemia.html
• Health Topic: G6PD Deficiency
https://medlineplus.gov/g6pddeficiency.html

• Health Topic: Newborn Screening
https://medlineplus.gov/newbornscreening.html

Genetic and Rare Diseases Information Center
• Glucose-6-phosphate dehydrogenase deficiency
https://rarediseases.info.nih.gov/diseases/6520/glucose-6-phosphate-dehydrogenase-deficiency

Educational Resources
• Disease InfoSearch: Glucose 6 Phosphate Dehydrogenase Deficiency
http://www.diseaseinfosearch.org/Glucose+6+Phosphate+Dehydrogenase+Deficiency/3096

• KidsHealth from the Nemours Foundation
http://kidshealth.org/en/parents/g6pd.html

• MalaCards: anemia, nonspherocytic hemolytic, due to g6pd deficiency
http://www.malacards.org/card/anemia_nonspherocytic_hemolytic_due_to_g6pd_deficiency

• Malaria Atlas Project
https://map.ox.ac.uk/research-project/duffy-negativity/

• Orphanet: NON RARE IN EUROPE: Glucose-6-phosphate-dehydrogenase deficiency
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=362

Patient Support and Advocacy Resources
• Children Living With Inherited Metabolic Diseases (CLIMP) (UK)
http://www.climb.org.uk/

• National Organization for Rare Disorders (NORD)
https://rarediseases.org/rare-diseases/glucose-6-phosphate-dehydrogenase-deficiency/

• Resource list from the University of Kansas Medical Center
http://www.kumc.edu/gec/support/metaboli.html

ClinicalTrials.gov
• ClinicalTrials.gov
https://clinicaltrials.gov/ct2/results?cond=%22glucose-6-phosphate+dehydrogenase+deficiency%22
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Glucosephosphate+Dehydrogenase+Deficiency%5BMAJR%5D%29+AND+%28glucose-6-phosphate+dehydrogenase+deficiency%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

OMIM

- GLUCOSE-6-PHOSPHATE DEHYDROGENASE
 http://omim.org/entry/305900

MedGen

- Deficiency of glucose-6-phosphate dehydrogenase

Sources for This Summary

Reprinted from Genetics Home Reference:

Reviewed: May 2017
Published: July 10, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services