Fibrodysplasia ossificans progressiva

Fibrodysplasia ossificans progressiva (FOP) is a disorder in which muscle tissue and connective tissue such as tendons and ligaments are gradually replaced by bone (ossified), forming bone outside the skeleton (extra-skeletal or heterotopic bone) that constrains movement. This process generally becomes noticeable in early childhood, starting with the neck and shoulders and proceeding down the body and into the limbs.

Extra-skeletal bone formation causes progressive loss of mobility as the joints become affected. Inability to fully open the mouth may cause difficulty in speaking and eating. Over time, people with this disorder may experience malnutrition due to their eating problems. They may also have breathing difficulties as a result of extra bone formation around the rib cage that restricts expansion of the lungs.

Any trauma to the muscles of an individual with fibrodysplasia ossificans progressiva, such as a fall or invasive medical procedures, may trigger episodes of muscle swelling and inflammation (myositis) followed by more rapid ossification in the injured area. Flare-ups may also be caused by viral illnesses such as influenza.

People with fibrodysplasia ossificans progressiva are generally born with malformed big toes. This abnormality of the big toes is a characteristic feature that helps to distinguish this disorder from other bone and muscle problems. Affected individuals may also have short thumbs and other skeletal abnormalities.

Frequency

Fibrodysplasia ossificans progressiva is a very rare disorder, believed to occur in approximately 1 in 2 million people worldwide. Several hundred cases have been reported.

Causes

Mutations in the ACVR1 gene cause fibrodysplasia ossificans progressiva.

The ACVR1 gene provides instructions for producing a member of a protein family called bone morphogenetic protein (BMP) type I receptors. The ACVR1 protein is found in many tissues of the body including skeletal muscle and cartilage. It helps to control the growth and development of the bones and muscles, including the gradual replacement of cartilage by bone (ossification) that occurs in normal skeletal maturation from birth to young adulthood.

Researchers believe that a mutation in the ACVR1 gene may change the shape of the receptor under certain conditions and disrupt mechanisms that control the receptor's activity. As a result, the receptor may be constantly turned on (constitutive activation). Constitutive activation of the receptor causes overgrowth of bone and cartilage and
fusion of joints, resulting in the signs and symptoms of fibrodysplasia ossificans progressiva.

Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Most cases of fibrodysplasia ossificans progressiva result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. In a small number of cases, an affected person has inherited the mutation from one affected parent.

Other Names for This Condition

- Myositis Ossificans
- Myositis ossificans progressiva
- Progressive myositis ossificans
- progressive ossifying myositis

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 https://primer/testing/genetictesting
- Genetic Testing Registry: Progressive myositis ossificans

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22fibrodysplasia+ossificans+progressiva%22+OR+%22Myositis+Ossificans%22

Additional Information & Resources

Health Information from MedlinePlus

- Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html
- Health Topic: Muscle Disorders
 https://medlineplus.gov/muscledisorders.html
- Health Topic: Myositis
 https://medlineplus.gov/myositis.html
Genetic and Rare Diseases Information Center

- Fibrodysplasia ossificans progressiva
 https://rarediseases.info.nih.gov/diseases/6445/fibrodysplasia-ossificans-progressiva

Educational Resources

- Johns Hopkins University: Skeletal Dysplasias
 https://www.hopkinsmedicine.org/health/conditions-and-diseases/skeletal-dysplasia

- MalaCards: fibrodysplasia ossificans progressiva
 https://www.malacards.org/card/fibrodysplasia_ossificans_progressiva

- Orphanet: Fibrodysplasia ossificans progressiva
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=337

- UCSF Children's Hospital
 https://www.ucsfbenioffchildrens.org/conditions/fibrodysplasia_ossificans_progressiva/

Patient Support and Advocacy Resources

- International Fibrodysplasia Ossificans Progressiva Association
 https://www.ifopa.org/

- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/fibrodysplasia-ossificans-progressiva/

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Myositis+Ossificans%5BMAJR%5D%29+AND+%28fibrodysplasia+ossificans+progressiva%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- FIBRODYSPLASIA OSSIFICANS PROGRESSIVA
 http://omim.org/entry/135100

Sources for This Summary

• OMIM: FIBRODYSPLASIA OSSIFICANS PROGRESSIVA
 http://omim.org/entry/135100

• Fiori JL, Billings PC, de la Peña LS, Kaplan FS, Shore EM. Dysregulation of the BMP-p38 MAPK
 signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16753021

• Gannon FH, Glaser D, Caron R, Thompson LD, Shore EM, Kaplan FS. Mast cell involvement in
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11521229

• Groppe JC, Shore EM, Kaplan FS. Functional modeling of the ACVR1 (R206H) mutation in FOP.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17572636

• Kaplan FS, Glaser DL, Pignolo RJ, Shore EM. A new era for fibrodysplasia ossificans progressiva: a
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17477807

• Nakajima M, Haga N, Takikawa K, Manabe N, Nishimura G, Ikegawa S. The ACVR1 617G>A
 mutation is also recurrent in three Japanese patients with fibrodysplasia ossificans progressiva. J
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17351709

• O'Connell MP, Billings PC, Fiori JL, Deirmengian G, Roach HI, Shore EM, Kaplan FS. HSPG
 modulation of BMP signaling in fibrodysplasia ossificans progressiva cells. J Cell Biochem. 2007
 Dec 15;102(6):1493-503.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17516498

• Olmsted EA, Kaplan FS, Shore EM. Bone morphogenetic protein-4 regulation in fibrodysplasia
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12616078

• Scarlett RF, Rocke DM, Kantanie S, Patel JB, Shore EM, Kaplan FS. Influenza-like viral illnesses
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15232462

 Kaplan FS. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic
 Cho, Tae-Joon [added]; Choi, In Ho [added]; Connor, J Michael [added]; Delai, Patricia [added];
 Glaser, David L [added]; LeMerrer, Martine [added]; Morhart, Rolf [added]; Rogers, John G [added];
 Smith, Roger [added]; Triffitt, James T [added]; Urtizberea, J Andoni [added]; Zasloff, Michael
 [added].
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16642017

Reprinted from Genetics Home Reference:

Reviewed: August 2007
Published: July 16, 2019