FG syndrome

FG syndrome is a genetic condition that affects many parts of the body and occurs almost exclusively in males. "FG" represents the surname initials of the first family diagnosed with the disorder.

FG syndrome affects intelligence and behavior. Almost everyone with the condition has intellectual disability, which ranges from mild to severe. Affected individuals tend to be friendly, inquisitive, and hyperactive, with a short attention span. Compared to people with other forms of intellectual disability, their socialization and daily living skills are strong, while verbal communication and language skills tend to be weaker.

The physical features of FG syndrome include weak muscle tone (hypotonia), broad thumbs, and wide first (big) toes. Abnormalities of the tissue connecting the left and right halves of the brain (the corpus callosum) are also common. Most affected individuals have constipation, and many have abnormalities of the anus such as an obstruction of the anal opening (imperforate anus). People with FG syndrome also tend to have a distinctive facial appearance including small, underdeveloped ears; a tall, prominent forehead; and outside corners of the eyes that point downward (down-slanting palpebral fissures).

Additional features seen in some people with FG syndrome include widely set eyes (hypertelorism), an upswept frontal hairline, and a large head compared to body size (relative macrocephaly). Other health problems have also been reported, including heart defects, seizures, undescended testes (cryptorchidism) in males, and a soft out-pouching in the lower abdomen (an inguinal hernia).

Frequency

The prevalence of FG syndrome is unknown, although several hundred cases have been reported worldwide. Researchers suspect that FG syndrome may be overdiagnosed because many of its signs and symptoms are also seen with other disorders.

Causes

Researchers have identified changes in five regions of the X chromosome that are linked to FG syndrome in affected families. Mutations in a gene called MED12, which is located in one of these regions, appear to be the most common cause of the disorder. Researchers are investigating genes in other regions of the X chromosome that may also be associated with FG syndrome.

The MED12 gene provides instructions for making a protein that helps regulate gene activity. Specifically, the MED12 protein forms part of a large complex (a group of
proteins that work together) that turns genes on and off. The MED12 protein is thought
to play an essential role in development both before and after birth.

At least two mutations in the MED12 gene have been found to cause FG syndrome.
Although the mutations alter the structure of the MED12 protein, it is unclear how they
lead to intellectual disability, behavioral changes, and the physical features associated
with this condition.

Inheritance Pattern

FG syndrome is inherited in an X-linked recessive pattern. The genes likely associated
with this disorder, including MED12, are located on the X chromosome, which is one of
the two sex chromosomes. In males (who have only one X chromosome), one altered
copy of the gene in each cell is sufficient to cause the condition. In females (who have
two X chromosomes), a mutation usually must occur in both copies of the gene to
cause the disorder. Because it is unlikely that females will have two altered copies of a
gene on the X chromosome, males are affected by X-linked recessive disorders much
more frequently than females. A characteristic of X-linked inheritance is that fathers
cannot pass X-linked traits to their sons.

Other Names for This Condition

- FGS
- FGS1
- Keller syndrome
- mental retardation, large head, imperforate anus, congenital hypotonia, and partial
  agenesis of the corpus callosum
- OKS
- Opitz-Kaveggia syndrome

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
  /primer/testing/genetictesting
- Genetic Testing Registry: FG syndrome
- Genetic Testing Registry: FG syndrome 2
- Genetic Testing Registry: FG syndrome 3
• Genetic Testing Registry: FG syndrome 4

• Genetic Testing Registry: FG syndrome 5

**Other Diagnosis and Management Resources**

• GeneReview: MED12-Related Disorders
  https://www.ncbi.nlm.nih.gov/books/NBK1676

• MedlinePlus Encyclopedia: Corpus Callosum of the Brain (image)
  https://medlineplus.gov/ency/imagepages/8753.htm

• MedlinePlus Encyclopedia: Imperforate Anus
  https://medlineplus.gov/ency/article/001147.htm

**Additional Information & Resources**

**Health Information from MedlinePlus**

• Encyclopedia: Corpus Callosum of the Brain (image)
  https://medlineplus.gov/ency/imagepages/8753.htm

• Encyclopedia: Imperforate Anus
  https://medlineplus.gov/ency/article/001147.htm

• Health Topic: Developmental Disabilities
  https://medlineplus.gov/developmentaldisabilities.html

**Genetic and Rare Diseases Information Center**

• FG syndrome

**Educational Resources**

• MalaCards: fg syndrome 2
  https://www.malacards.org/card/fg Syndrome_2

• MalaCards: fg syndrome 3
  https://www.malacards.org/card/fg Syndrome_3

• MalaCards: fg syndrome 4
  https://www.malacards.org/card/fg Syndrome_4

• MalaCards: fg syndrome 5
  https://www.malacards.org/card/fg Syndrome_5

• MalaCards: opitz-kaveggia syndrome
  https://www.malacards.org/card/opitz_kaveggia_syndrome
• Orphanet: FG syndrome type 1
  https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=93932

• Unique: Rare Chromosome Disorder Support Group (UK)

Patient Support and Advocacy Resources

• American Association on Intellectual and Developmental Disabilities
  http://aaidd.org/

• National Organization for Rare Disorders (NORD)
  https://rarediseases.org/rare-diseases/fg-syndrome-type-1/

Clinical Information from GeneReviews

• MED12-Related Disorders
  https://www.ncbi.nlm.nih.gov/books/NBK1676

Scientific Articles on PubMed

• PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28fg+syndrome%5BTIAB%5D%29+OR+%28opitz-kaveggia+syndrome%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• FG SYNDROME 2
  http://omim.org/entry/300321

• FG SYNDROME 3
  http://omim.org/entry/300406

• FG SYNDROME 4
  http://omim.org/entry/300422

• FG SYNDROME 5
  http://omim.org/entry/300581

• OPITZ-KAVEGGIA SYNDROME
  http://omim.org/entry/305450

Medical Genetics Database from MedGen

• FG syndrome
Sources for This Summary

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9375929

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10449643

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19938245 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113033/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12239712

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9805132

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18973276 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092600/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16283679

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18805826


  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11180218
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12522552

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17334363

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20507344

Reprinted from Genetics Home Reference:

Reviewed: December 2012
Published: October 1, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services