Factor V Leiden thrombophilia

Factor V Leiden thrombophilia is an inherited disorder of blood clotting. Factor V Leiden is the name of a specific gene mutation that results in thrombophilia, which is an increased tendency to form abnormal blood clots that can block blood vessels.

People with factor V Leiden thrombophilia have a higher than average risk of developing a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the legs, although they can also occur in other parts of the body, including the brain, eyes, liver, and kidneys. Factor V Leiden thrombophilia also increases the risk that clots will break away from their original site and travel through the bloodstream. These clots can lodge in the lungs, where they are known as pulmonary emboli. Although factor V Leiden thrombophilia increases the risk of blood clots, only about 10 percent of individuals with the factor V Leiden mutation ever develop abnormal clots.

The factor V Leiden mutation is associated with a slightly increased risk of pregnancy loss (miscarriage). Women with this mutation are two to three times more likely to have multiple (recurrent) miscarriages or a pregnancy loss during the second or third trimester. Some research suggests that the factor V Leiden mutation may also increase the risk of other complications during pregnancy, including pregnancy-induced high blood pressure (preeclampsia), slow fetal growth, and early separation of the placenta from the uterine wall (placental abruption). However, the association between the factor V Leiden mutation and these complications has not been confirmed. Most women with factor V Leiden thrombophilia have normal pregnancies.

Frequency

Factor V Leiden is the most common inherited form of thrombophilia. Between 3 and 8 percent of people with European ancestry carry one copy of the factor V Leiden mutation in each cell, and about 1 in 5,000 people have two copies of the mutation. The mutation is less common in other populations.

Causes

A particular mutation in the F5 gene causes factor V Leiden thrombophilia. The F5 gene provides instructions for making a protein called coagulation factor V. This protein plays a critical role in the coagulation system, which is a series of chemical reactions that forms blood clots in response to injury.

The coagulation system is controlled by several proteins, including a protein called activated protein C (APC). APC normally inactivates coagulation factor V, which slows down the clotting process and prevents clots from growing too large. However, in people with factor V Leiden thrombophilia, coagulation factor V cannot be inactivated.
normally by APC. As a result, the clotting process remains active longer than usual, increasing the chance of developing abnormal blood clots.

Other factors also increase the risk of developing blood clots in people with factor V Leiden thrombophilia. These factors include increasing age, obesity, injury, surgery, smoking, pregnancy, and the use of oral contraceptives (birth control pills) or hormone replacement therapy. The risk of abnormal clots is also much higher in people who have a combination of the factor V Leiden mutation and another mutation in the F5 gene. Additionally, the risk is increased in people who have the factor V Leiden mutation together with a mutation in another gene involved in the coagulation system.

**Inheritance Pattern**

The chance of developing an abnormal blood clot depends on whether a person has one or two copies of the factor V Leiden mutation in each cell. People who inherit two copies of the mutation, one from each parent, have a higher risk of developing a clot than people who inherit one copy of the mutation. Considering that about 1 in 1,000 people per year in the general population will develop an abnormal blood clot, the presence of one copy of the factor V Leiden mutation increases that risk to 3 to 8 in 1,000, and having two copies of the mutation may raise the risk to as high as 80 in 1,000.

**Other Names for This Condition**

- APC resistance, Leiden type
- Hereditary resistance to activated protein C

**Diagnosis & Management**

**Genetic Testing Information**

- What is genetic testing? /primer/testing/genetictesting

- American College of Medical Genetics and Genomics Consensus Statement on Factor V Leiden Mutation Testing

- Genetic Testing Registry: Thrombophilia due to activated protein C resistance

- Genetic Testing Registry: Thrombophilia due to factor V Leiden

**Research Studies from ClinicalTrials.gov**

- ClinicalTrials.gov
  https://clinicaltrials.gov/ct2/results?cond=%22factor+V+Leiden+thrombophilia%22+OR+%22Thrombophilia%22
Other Diagnosis and Management Resources


Additional Information & Resources

Health Information from MedlinePlus


Genetic and Rare Diseases Information Center


Additional NIH Resources

- National Human Genome Research Institute https://www.genome.gov/Genetic-Disorders/Factor-V-Leiden-Thrombophilia

Educational Resources

- Factor V Leiden Cardiology Patient Page https://www.ahajournals.org/doi/full/10.1161/01.cir.0000068167.08920.f1
- MalaCards: factor v leiden thrombophilia https://www.malacards.org/card/factor_v_leiden_thrombophilia
Patient Support and Advocacy Resources
• National Blood Clot Alliance
  https://www.stoptheclot.org/
• Resource list from the University of Kansas Medical Center
  http://www.kumc.edu/gec/support/leiden.html

Clinical Information from GeneReviews
• Factor V Leiden Thrombophilia
  https://www.ncbi.nlm.nih.gov/books/NBK1368

Scientific Articles on PubMed
• PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28factor+V+Leiden%5BTI%5D%29+AND+%28thrombophilia%5BTIAB%5D%29+AND+english%5BLa%5D+AND+human%5BMh%5D+AND+%22last+1080+days%22+AND+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• THROMBOPHILIA DUE TO ACTIVATED PROTEIN C RESISTANCE
  http://omim.org/entry/188055

Sources for This Summary
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19630821

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17550313

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19531787

Reprinted from Genetics Home Reference:  

Reviewed: August 2010  
Published: January 7, 2020

Lister Hill National Center for Biomedical Communications  
U.S. National Library of Medicine  
National Institutes of Health  
Department of Health & Human Services