Episodic ataxia

Episodic ataxia is a group of related conditions that affect the nervous system and cause problems with movement. People with episodic ataxia have recurrent episodes of poor coordination and balance (ataxia). During these episodes, many people also experience dizziness (vertigo), nausea and vomiting, migraine headaches, blurred or double vision, slurred speech, and ringing in the ears (tinnitus). Seizures, muscle weakness, and paralysis affecting one side of the body (hemiplegia) may also occur during attacks. Additionally, some affected individuals have a muscle abnormality called myokymia during or between episodes. This abnormality can cause muscle cramping, stiffness, and continuous, fine muscle twitching that appears as rippling under the skin.

Episodes of ataxia and other symptoms can begin anytime from early childhood to adulthood. They can be triggered by environmental factors such as emotional stress, caffeine, alcohol, certain medications, physical activity, and illness. The frequency of attacks ranges from several per day to one or two per year. Between episodes, some affected individuals continue to experience ataxia, which may worsen over time, as well as involuntary eye movements called nystagmus.

Researchers have identified at least seven types of episodic ataxia, designated type 1 through type 7. The types are distinguished by their pattern of signs and symptoms, age of onset, length of attacks, and, when known, genetic cause.

Frequency

Episodic ataxia is uncommon, affecting less than 1 in 100,000 people. Only types 1 and 2 have been identified in more than one family, and type 2 is by far the most common form of the condition.

Genetic Changes

Episodic ataxia can be caused by mutations in several genes that play important roles in the nervous system. Three of these genes, KCNA1, CACNA1A, and CACNB4, provide instructions for making proteins that are involved in the transport of charged atoms (ions) across cell membranes. The movement of these ions is critical for normal signaling between nerve cells (neurons) in the brain and other parts of the nervous system. Mutations in the KCNA1, CACNA1A, and CACNB4 genes are responsible for episodic ataxia types 1, 2, and 5, respectively.

Mutations in the SLC1A3 gene have been found to cause episodic ataxia type 6. This gene provides instructions for making a protein that transports a brain chemical (neurotransmitter) called glutamate. Neurotransmitters, including glutamate, allow neurons to communicate by relaying chemical signals from one neuron to another.
Researchers believe that mutations in the \textit{KCNA1}, \textit{CACNA1A}, \textit{CACNB4}, and \textit{SLC1A3} genes alter the transport of ions and glutamate in the brain, which causes certain neurons to become overexcited and disrupts normal communication between these cells. Although changes in chemical signaling in the brain underlie the recurrent attacks seen in people with episodic ataxia, it is unclear how mutations in these genes cause the specific features of the disorder.

The genetic causes of episodic ataxia types 3, 4, and 7 have not been identified. Researchers are looking for additional genes that can cause episodic ataxia.

\textbf{Inheritance Pattern}

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family.

\textbf{Other Names for This Condition}

- EA

\textbf{Diagnosis & Management}

\textbf{Genetic Testing}

- Genetic Testing Registry: Episodic ataxia type 1
- Genetic Testing Registry: Episodic ataxia type 2
- Genetic Testing Registry: Episodic ataxia, type 3
- Genetic Testing Registry: Episodic ataxia, type 4
- Genetic Testing Registry: Episodic ataxia, type 7

\textbf{Other Diagnosis and Management Resources}

- Consortium for Clinical Investigations of Neurological Channelopathies (CINCH)
 https://www.rarediseasesnetwork.org/cinch/
- GeneReview: Episodic Ataxia Type 1
 https://www.ncbi.nlm.nih.gov/books/NBK25442
- GeneReview: Episodic Ataxia Type 2
 https://www.ncbi.nlm.nih.gov/books/NBK1501
- MedlinePlus Encyclopedia: Movement - uncoordinated
 https://medlineplus.gov/ency/article/003198.htm
- MedlinePlus Encyclopedia: Vertigo-associated disorders
 https://medlineplus.gov/ency/article/001432.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

- MedlinePlus
 - Encyclopedia: Movement - uncoordinated
 https://medlineplus.gov/ency/article/003198.htm
 - Encyclopedia: Vertigo-associated disorders
 https://medlineplus.gov/ency/article/001432.htm
 - Health Topic: Cerebellar Disorders
 https://medlineplus.gov/cerebellardisorders.html
 - Health Topic: Neurologic Diseases
 https://medlineplus.gov/neurologicdiseases.html

- Genetic and Rare Diseases Information Center
 - Episodic ataxia
 https://rarediseases.info.nih.gov/diseases/9851/episodic-ataxia

- Additional NIH Resources
 - National Institute of Neurological Disorders and Stroke
 https://www.ninds.nih.gov/Disorders/All-Disorders/Ataxias-and-Cerebellar-or-Spinocerebellar-Degeneration-Information-Page
Educational Resources

• Disease InfoSearch: Episodic ataxia
 http://www.diseaseinfosearch.org/Episodic+ataxia/2621

• MalaCards: episodic ataxia
 http://www.malacards.org/card/episodic_ataxia

• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/ataxia/domatax.html#epatax

• Orphanet: Episodic ataxia type 3
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=79135

• Orphanet: Episodic ataxia type 4
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=79136

• University of Minnesota Ataxia Center
 http://www.ataxiacenter.umn.edu/aboutataxia/hereditary/episodic/home.html

Patient Support and Advocacy Resources

• National Ataxia Foundation
 https://ataxia.org/

• National Organization for Rare Disorders (NORD): Autosomal Dominant Hereditary Ataxia
 https://rarediseases.org/rare-diseases/autosomal-dominant-hereditary-ataxia/

GeneReviews

• Episodic Ataxia Type 1
 https://www.ncbi.nlm.nih.gov/books/NBK25442

• Episodic Ataxia Type 2
 https://www.ncbi.nlm.nih.gov/books/NBK1501

ClinicalTrials.gov

• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22episodic+ataxia%22

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Ataxia%5BMAJR%5D%29+AND+%28episodic+ataxia%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+human%5Bdp%5D
OMIM

- CALCIUM CHANNEL, VOLTAGE-DEPENDENT, BETA-4 SUBUNIT
 http://omim.org/entry/601949
- EPISODIC ATAXIA, TYPE 1
 http://omim.org/entry/160120
- EPISODIC ATAXIA, TYPE 2
 http://omim.org/entry/108500
- EPISODIC ATAXIA, TYPE 3
 http://omim.org/entry/606554
- EPISODIC ATAXIA, TYPE 4
 http://omim.org/entry/606552
- EPISODIC ATAXIA, TYPE 7
 http://omim.org/entry/611907
- SOLUTE CARRIER FAMILY 1 (GLIAL HIGH AFFINITY GLUTAMATE TRANSPORTER), MEMBER 3
 http://omim.org/entry/600111

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17502476
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395136
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301674
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11673600
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395137

Reprinted from Genetics Home Reference:

Reviewed: August 2008
Published: May 29, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services