Deoxyguanosine kinase deficiency

Deoxyguanosine kinase deficiency is an inherited disorder that can cause liver disease and neurological problems. Researchers have described two forms of this disorder. The majority of affected individuals have the more severe form, which is called hepatocerebral because of the serious problems it causes in the liver and brain.

Newborns with the hepatocerebral form of deoxyguanosine kinase deficiency may have a buildup of lactic acid in the body (lactic acidosis) within the first few days after birth. They may also have weakness, behavior changes such as poor feeding and decreased activity, and vomiting. Affected newborns sometimes have low blood sugar (hypoglycemia) as a result of liver dysfunction. During the first few weeks of life they begin showing other signs of liver disease which may result in liver failure. They also develop progressive neurological problems including very weak muscle tone (severe hypotonia), abnormal eye movements (nystagmus) and the loss of skills they had previously acquired (developmental regression). Children with this form of the disorder usually do not survive past the age of 2 years.

Some individuals with deoxyguanosine kinase deficiency have a milder form of the disorder without severe neurological problems. Liver disease is the primary symptom of this form of the disorder, generally becoming evident during infancy or childhood. Occasionally it first appears after an illness such as a viral infection. Affected individuals may also develop kidney problems. Mild hypotonia is the only neurological effect associated with this form of the disorder.

Frequency

The prevalence of deoxyguanosine kinase deficiency is unknown. Approximately 100 affected individuals have been identified.

Causes

The *DGUOK* gene provides instructions for making the enzyme deoxyguanosine kinase. This enzyme plays a critical role in mitochondria, which are structures within cells that convert the energy from food into a form that cells can use. Mitochondria each contain a small amount of DNA, known as mitochondrial DNA or mtDNA, which is essential for the normal function of these structures. Deoxyguanosine kinase is involved in producing and maintaining the building blocks of mitochondrial DNA.

Mutations in the *DGUOK* gene reduce or eliminate the activity of the deoxyguanosine kinase enzyme. Reduced enzyme activity leads to problems with the production and maintenance of mitochondrial DNA. A reduction in the amount of mitochondrial DNA (known as mitochondrial DNA depletion) impairs mitochondrial function in many of the...
body’s cells and tissues. These problems lead to the neurological and liver dysfunction associated with deoxyguanosine kinase deficiency.

Inheritance Pattern
Deoxyguanosine kinase deficiency is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. In most cases, the parents of an individual with this condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition
- DGUOK-related mitochondrial DNA depletion syndrome
- hepatocerebral mitochondrial DNA depletion syndrome
- mitochondrial DNA depletion syndrome, hepatocerebral form

Diagnosis & Management
Genetic Testing Information
- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Mitochondrial DNA-depletion syndrome 3, hepatocerebral

Research Studies from ClinicalTrials.gov
- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22Mitochondrial+Diseases%22+OR+%22deoxyguanosine+kinase+deficiency%22

Other Diagnosis and Management Resources
- GeneReview: Deoxyguanosine Kinase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK7040
- MedlinePlus Encyclopedia: Hypotonia
 https://medlineplus.gov/ency/article/003298.htm

Additional Information & Resources
Health Information from MedlinePlus
- Encyclopedia: Hypotonia
 https://medlineplus.gov/ency/article/003298.htm
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
• Health Topic: Liver Diseases
 https://medlineplus.gov/liverdiseases.html

• Health Topic: Mitochondrial Diseases
 https://medlineplus.gov/mitochondrialdiseases.html

Genetic and Rare Diseases Information Center
• MPV17-related hepatocerebral mitochondrial DNA depletion syndrome
 https://rarediseases.info.nih.gov/diseases/3972/mpv17-related-hepatocerebral-
 mitochondrial-dna-depletion-syndrome

Additional NIH Resources
• National Institute of Neurological Disorders and Stroke (NINDS): Hypotonia
 Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Hypotonia-Information-Page

Educational Resources
• MalaCards: deoxyguanosine kinase deficiency
 https://www.malacards.org/card/deoxyguanosine_kinase_deficiency

• Orphanet: Mitochondrial DNA depletion syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=35698

Patient Support and Advocacy Resources
• American Liver Foundation
 https://liverfoundation.org/

• United Mitochondrial Disease Foundation
 https://www.umdf.org/

• University of Kansas Medical Center Resource List: Mitochondrial Conditions
 http://www.kumc.edu/gec/support/mitochon.html

Clinical Information from GeneReviews
• Deoxyguanosine Kinase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK7040

Scientific Articles on PubMed
• PubMed
 deficiency%5BTIAB%5D%29+OR+%28mitochondrial+DNA+depletion+syndrome
 %29%29+AND+%28dguok%29+AND+english%5Bla%5D+AND+human%5Bmh
 %5D+AND+%22last+3600+days%22%5Bdp%5D
Catalog of Genes and Diseases from OMIM

- MITOCHONDRIAL DNA DEPLETION SYNDROME 3 (HEPATOCEREBRAL TYPE)
 http://omim.org/entry/251880

Medical Genetics Database from MedGen

- Deoxyguanosine Kinase Deficiency

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17280874

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19394258

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17892433
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2271032/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18825706

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18205204

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301766

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16908739
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15964659

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11687800

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17073823
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1798436/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15571232

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19502998

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16263314

Reprinted from Genetics Home Reference:

Reviewed: December 2009
Published: January 21, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services