Dentatorubral-pallidoluysian atrophy

Dentatorubral-pallidoluysian atrophy, commonly known as DRPLA, is a progressive brain disorder that causes involuntary movements, mental and emotional problems, and a decline in thinking ability. The average age of onset of DRPLA is 30 years, but this condition can appear anytime from infancy to mid-adulthood.

The signs and symptoms of DRPLA differ somewhat between affected children and adults. When DRPLA appears before age 20, it most often involves episodes of involuntary muscle jerking or twitching (myoclonus), seizures, behavioral changes, intellectual disability, and problems with balance and coordination (ataxia). When DRPLA begins after age 20, the most frequent signs and symptoms are ataxia, uncontrollable movements of the limbs (choreoathetosis), psychiatric symptoms such as delusions, and deterioration of intellectual function (dementia).

Frequency

DRPLA is most common in the Japanese population, where it has an estimated incidence of 2 to 7 per million people. This condition has also been seen in families from North America and Europe.

Although DRPLA is rare in the United States, it has been studied in a large African American family from the Haw River area of North Carolina. When the family was first identified, researchers named the disorder Haw River syndrome. Later, researchers determined that Haw River syndrome and DRPLA are the same condition.

Causes

DRPLA is caused by a mutation in the ATN1 gene. This gene provides instructions for making a protein called atrophin 1. Although the function of atrophin 1 is unclear, it likely plays an important role in nerve cells (neurons) in many areas of the brain.

The ATN1 mutation that underlies DRPLA involves a DNA segment known as a CAG trinucleotide repeat. This segment is made up of a series of three DNA building blocks (cytosine, adenine, and guanine) that appear multiple times in a row. Normally, this segment is repeated 6 to 35 times within the ATN1 gene. In people with DRPLA, the CAG segment is repeated at least 48 times, and the repeat region may be two or three times its usual length. The abnormally long CAG trinucleotide repeat changes the structure of atrophin 1. This altered protein accumulates in neurons and interferes with normal cell functions. The dysfunction and eventual death of these neurons lead to uncontrolled movements, intellectual decline, and the other characteristic features of DRPLA.
Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.

As the altered ATN1 gene is passed from one generation to the next, the size of the CAG trinucleotide repeat often increases in size. Larger repeat expansions are usually associated with an earlier onset of the disorder and more severe signs and symptoms. This phenomenon is called anticipation. Anticipation tends to be more prominent when the ATN1 gene is inherited from a person’s father (paternal inheritance) than when it is inherited from a person’s mother (maternal inheritance).

Other Names for This Condition

- DRPLA
- Haw River syndrome
- Myoclonic epilepsy with choreoathetosis
- Naito-Oyanagi disease
- NOD

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22dentatorubral-pallidoluysian+atrophy%22+OR+%22Dentatorubral-Pallidoluysian+Atrophy%22

Other Diagnosis and Management Resources

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Dementia
 https://medlineplus.gov/ency/article/000739.htm
- Encyclopedia: Epilepsy
 https://medlineplus.gov/ency/article/000694.htm
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
- Health Topic: Movement Disorders
 https://medlineplus.gov/movementdisorders.html

Genetic and Rare Diseases Information Center

- Dentatorubral-pallidoluysian atrophy
 https://rarediseases.info.nih.gov/diseases/5643/dentatorubral-pallidoluysian-atrophy

Additional NIH Resources

- National Institute of Neurological Disorders and Stroke: Ataxias and Cerebellar or Spinocerebellar Degeneration Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Ataxias-and-Cerebellar-or-Spinocerebellar-Degeneration-Information-Page
- National Institute of Neurological Disorders and Stroke: Dementia Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Dementia-Information-Page
- National Institute of Neurological Disorders and Stroke: Seizures and Epilepsy: Hope Through Research

Educational Resources

- MalaCards: dentatorubral-pallidoluysian atrophy
 http://www.malacards.org/card/dentatorubral_pallidoluysian_atrophy
- Orphanet: Dentatorubral pallidoluysian atrophy
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=101

Patient Support and Advocacy Resources

- National Ataxia Foundation
 https://ataxia.org/
- National Organization for Rare Disorders (NORD): Autosomal Dominant Hereditary Ataxia
 https://rarediseases.org/rare-diseases/autosomal-dominant-hereditary-ataxia/
Clinical Information from GeneReviews

- **DRPLA**
 https://www.ncbi.nlm.nih.gov/books/NBK1491

Scientific Articles on PubMed

- **PubMed**
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28dentatorubral-pallidoluysian+atrophy%5BTIAB%5D%29+OR+%28drpla%5BTIAB%5D%29+OR+%28naito-oyanagi+disease%5BTIAB%5D%29+OR+%2828haw+river+syndrome%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2880+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- **DENTATORUBRAL-PALLIDOLUYSIAN ATROPHY**
 http://omim.org/entry/125370

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11814736

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11968450

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301664

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11198291

Reprinted from Genetics Home Reference:

Reviewed: November 2008
Published: August 28, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services