Constitutional mismatch repair deficiency syndrome

Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare disorder that greatly increases the risk of developing one or more types of cancer in children and young adults. The cancers that most commonly occur in CMMRD syndrome are cancers of the colon (large intestine) and rectum (collectively referred to as colorectal cancer), brain, and blood (leukemia or lymphoma).

Almost all people with CMMRD syndrome develop cancer before age 18, generally in late childhood. The age of diagnosis varies depending on the cancer type; brain cancers, leukemia, and lymphomas tend to occur at younger ages than colorectal cancer in people with CMMRD syndrome. It is estimated that 20 to 40 percent of people with CMMRD syndrome who develop cancer will develop another cancer later in life.

People with CMMRD syndrome may develop multiple noncancerous (benign) growths (adenomas) in the colon that are likely to become cancerous (malignant) over time. Brain cancers in CMMRD syndrome often involve certain cells called glial cells, causing gliomas or glioblastomas. The most common blood cancer in CMMRD syndrome is called non-Hodgkin lymphoma, which affects white blood cells. Other cancers that can occur in CMMRD syndrome include cancers of the small intestine, urinary tract, or uterine lining (endometrial cancer).

Many people with CMMRD syndrome develop features similar to those that occur in a condition called neurofibromatosis type 1. These features include changes in skin coloring (pigmentation), which are characterized by one or more flat patches on the skin that are darker than the surrounding area (café-au-lait spots). Some affected individuals have freckling or patches of skin that are unusually light in color (hypopigmented). Rarely, people with CMMRD syndrome will develop a feature of neurofibromatosis type 1 called Lisch nodules, which are benign growths that often appear in the colored part of the eye (the iris). Lisch nodules do not interfere with vision. Some people with CMMRD syndrome are initially misdiagnosed with neurofibromatosis type 1.

Frequency

CMMRD syndrome is a rare disorder; more than 200 affected individuals have been reported in the scientific literature.

Causes

Mutations in the \textit{PMS2} gene are the most common cause of CMMRD syndrome, and mutations in the \textit{MLH1}, \textit{MSH2}, or \textit{MSH6} gene cause the remaining cases. These four genes are involved in repairing errors that occur when DNA is copied in preparation for cell division (a process called DNA replication). Because these genes work together to fix DNA errors, they are known as DNA mismatch repair (MMR) genes.
Mutations in any of these genes result in near or complete loss of functional protein. A shortage of one of these proteins eliminates mismatch repair activity and prevents the proper repair of errors that occur during DNA replication. The errors accumulate and disrupt other genes involved in important cellular processes such as controlling cell growth and division (proliferation). Uncontrolled cell growth can lead to childhood cancer in people with CMMRD syndrome.

It is thought that the features of neurofibromatosis type 1 in people with CMMRD syndrome are due to genetic changes in the \textit{NF1} gene that result from a loss of mismatch repair. These changes are present only in certain cells (somatic mutations), whereas \textit{NF1} gene mutations that are present in all cells of the body cause neurofibromatosis type 1.

Inheritance Pattern

CMMRD syndrome is inherited in an autosomal recessive pattern, which means having mutations in both copies of the gene greatly increases the risk of developing cancer. The parents of an individual with CMMRD syndrome each carry one copy of the mutated gene.

A single mutation in any of the genes associated with CMMRD syndrome generally leads to a different cancer predisposition syndrome called Lynch syndrome. Because the parents of an individual with CMMRD syndrome typically have a single copy of the mutated gene, they may have Lynch syndrome. Lynch syndrome increases the risk of many types of cancer, particularly colorectal cancer, but also cancers of the stomach, small intestine, gallbladder ducts, upper urinary tract, endometrium, brain, and skin. Unlike CMMRD syndrome, individuals with Lynch syndrome often develop these cancers in adulthood. Additionally, not all people with Lynch syndrome develop cancerous tumors, so a person with CMMRD syndrome might not have a history of cancer in their family.

Other Names for This Condition

- biallelic mismatch repair deficiency syndrome
- BMMRD
- mismatch repair cancer syndrome
- mismatch repair deficiency
Diagnosis & Management

Formal Diagnostic Criteria

Genetic Testing Information

- What is genetic testing?

- Genetic Testing Registry: Turcot syndrome

- National Cancer Institute: Genetic Testing for Inherited Cancer Susceptibility Syndromes

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22constitutional+mismatch+repair+deficiency+syndrome%22+OR+%22mismatch+repair+deficiency%22

Other Diagnosis and Management Resources

- The University of Toronto Hospital for Sick Children: The International Biallelic Mismatch Repair Deficiency Consortium
 http://www.sickkids.ca/MMRD/patients-families/index.html
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Non-Hodgkin Lymphoma
 https://medlineplus.gov/ency/article/000581.htm
- Health Topic: Brain Tumors
 https://medlineplus.gov/braintumors.html
- Health Topic: Colorectal Cancer
 https://medlineplus.gov/colorectalcancer.html
- Health Topic: Leukemia
 https://medlineplus.gov/leukemia.html
- Health Topic: Lymphoma
 https://medlineplus.gov/lymphoma.html

Genetic and Rare Diseases Information Center

- Turcot syndrome

Additional NIH Resources

- National Cancer Institute: Genetic Testing for Inherited Cancer Susceptibility Syndromes

Educational Resources

- MD Anderson Cancer Center: Glioblastoma
 https://www.mdanderson.org/cancer-types/glioblastoma.html
- Merck Manual Consumer Version: Overview of Brain Tumors
- Orphanet: Constitutional mismatch repair deficiency syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=252202
- St. Jude Children's Research Hospital
 https://www.stjude.org/disease/constitutional-mismatch-repair-deficiency.html
Patient Support and Advocacy Resources

- American Cancer Society: Colorectal Cancer
- Colorectal Cancer Alliance
 https://www.ccalliance.org/
- Fight Colorectal Cancer
 https://fightcolorectalcancer.org/

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Colorectal+Neoplasms%5BMR%5D%29+AND+%28%28constitutional+mismatch+repair+deficiency+syndrome+%5BMTAB%5D%29+OR+%28mismatch+repair+syndrome%5BMTAB%5D%29%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- MISMATCH REPAIR CANCER SYNDROME
 http://omim.org/entry/276300

Medical Genetics Database from MedGen

- Turcot syndrome

Sources for This Summary

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26746812

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24737826

Reviewed: April 2020
Published: June 9, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services