Congenital hypothyroidism

Congenital hypothyroidism is a partial or complete loss of function of the thyroid gland (hypothyroidism) that affects infants from birth (congenital). The thyroid gland is a butterfly-shaped tissue in the lower neck. It makes iodine-containing hormones that play an important role in regulating growth, brain development, and the rate of chemical reactions in the body (metabolism). People with congenital hypothyroidism have lower-than-normal levels of these important hormones.

Congenital hypothyroidism occurs when the thyroid gland fails to develop or function properly. In 80 to 85 percent of cases, the thyroid gland is absent, severely reduced in size (hypoplastic), or abnormally located. These cases are classified as thyroid dysgenesis. In the remainder of cases, a normal-sized or enlarged thyroid gland (goiter) is present, but production of thyroid hormones is decreased or absent. Most of these cases occur when one of several steps in the hormone synthesis process is impaired; these cases are classified as thyroid dyshormonogenesis. Less commonly, reduction or absence of thyroid hormone production is caused by impaired stimulation of the production process (which is normally done by a structure at the base of the brain called the pituitary gland), even though the process itself is unimpaired. These cases are classified as central (or pituitary) hypothyroidism.

Signs and symptoms of congenital hypothyroidism result from the shortage of thyroid hormones. Affected babies may show no features of the condition, although some babies with congenital hypothyroidism are less active and sleep more than normal. They may have difficulty feeding and experience constipation. If untreated, congenital hypothyroidism can lead to intellectual disability and slow growth. In the United States and many other countries, all hospitals test newborns for congenital hypothyroidism. If treatment begins in the first two weeks after birth, infants usually develop normally.

Congenital hypothyroidism can also occur as part of syndromes that affect other organs and tissues in the body. These forms of the condition are described as syndromic. Some common forms of syndromic hypothyroidism include Pendred syndrome, Bamforth-Lazarus syndrome, and brain-lung-thyroid syndrome.

Frequency

Congenital hypothyroidism affects an estimated 1 in 2,000 to 4,000 newborns. For reasons that remain unclear, congenital hypothyroidism affects more than twice as many females as males.

Genetic Changes

Congenital hypothyroidism can be caused by a variety of factors, only some of which are genetic. The most common cause worldwide is a shortage of iodine in the diet.
of the mother and the affected infant. Iodine is essential for the production of thyroid hormones. Genetic causes account for about 15 to 20 percent of cases of congenital hypothyroidism.

The cause of the most common type of congenital hypothyroidism, thyroid dysgenesis, is usually unknown. Studies suggest that 2 to 5 percent of cases are inherited. Two of the genes involved in this form of the condition are PAX8 and TSHR. These genes play roles in the proper growth and development of the thyroid gland. Mutations in these genes prevent or disrupt normal development of the gland. The abnormal or missing gland cannot produce normal amounts of thyroid hormones.

Thyroid dyshormonogenesis results from mutations in one of several genes involved in the production of thyroid hormones. These genes include DUOX2, SLC5A5, TG, and TPO. Mutations in each of these genes disrupt a step in thyroid hormone synthesis, leading to abnormally low levels of these hormones. Mutations in the TSHB gene disrupt the synthesis of thyroid hormones by impairing the stimulation of hormone production. Changes in this gene are the primary cause of central hypothyroidism. The resulting shortage of thyroid hormones disrupts normal growth, brain development, and metabolism, leading to the features of congenital hypothyroidism.

Mutations in other genes that have not been as well characterized can also cause congenital hypothyroidism. Still other genes are involved in syndromic forms of the disorder.

Inheritance Pattern

Most cases of congenital hypothyroidism are sporadic, which means they occur in people with no history of the disorder in their family.

When inherited, the condition usually has an autosomal recessive inheritance pattern, which means both copies of the gene in each cell have mutations. Typically, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they do not show signs and symptoms of the condition.

When congenital hypothyroidism results from mutations in the PAX8 gene or from certain mutations in the TSHR or DUOX2 gene, the condition has an autosomal dominant pattern of inheritance, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some of these cases, an affected person inherits the mutation from one affected parent. Other cases result from new (de novo) mutations in the gene that occur during the formation of reproductive cells (eggs or sperm) or in early embryonic development. These cases occur in people with no history of the disorder in their family.

Other Names for This Condition

- CH
- CHT
• congenital myxedema
• cretinism

Diagnosis & Management

Formal Diagnostic Criteria

• ACT Sheet: Primary T4-Follow-up TSH test/Low T4 and/or Elevated TSH
 https://www.ncbi.nlm.nih.gov/books/NBK55827/bin/Primary_T4_Followup.pdf
• ACT Sheet: Primary TSH Test/Elevated TSH
 https://www.ncbi.nlm.nih.gov/books/NBK55827/bin/Primary_TSH.pdf

Genetic Testing

• Genetic Testing Registry: Congenital hypothyroidism
• Genetic Testing Registry: Deficiency of iodide peroxidase
• Genetic Testing Registry: Hypothyroidism, congenital, nongoitrous, 1
• Genetic Testing Registry: Thyroglobulin synthesis defect
• Genetic Testing Registry: Thyroid dysgenesis
• Genetic Testing Registry: Thyroid dyshormonogenesis 1
• Genetic Testing Registry: Thyroid dyshormonogenesis 6

Other Diagnosis and Management Resources

• Baby’s First Test
 http://www.babysfirsttest.org/newborn-screening/conditions/primary-congenital-hypothyroidism
• MedlinePlus Encyclopedia: Congenital Hypothyroidism
 https://medlineplus.gov/ency/article/001193.htm

General Information from MedlinePlus

• Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
• Drug Therapy
 https://medlineplus.gov/drugtherapy.html
• Genetic Counseling https://medlineplus.gov/geneticcounseling.html
• Palliative Care https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus
• Encyclopedia: Congenital Hypothyroidism https://medlineplus.gov/ency/article/001193.htm
• Health Topic: Hypothyroidism https://medlineplus.gov/hypothyroidism.html
• Health Topic: Newborn Screening https://medlineplus.gov/newbornscreening.html

Genetic and Rare Diseases Information Center
• Congenital hypothyroidism https://rarediseases.info.nih.gov/diseases/1487/congenital-hypothyroidism

Additional NIH Resources
• National Institute of Diabetes and Digestive and Kidney Diseases https://www.niddk.nih.gov/health-information/endocrine-diseases/hypothyroidism

Educational Resources
• Disease InfoSearch: Congenital Hypothyroidism http://www.diseaseinfosearch.org/Congenital-Hypothyroidism/1842
• Genetic Science Learning Center, University of Utah http://learn.genetics.utah.edu/content/disorders/multifactorial/
• Great Ormond Street Hospital for Children (UK) https://www.gosh.nhs.uk/conditions-and-treatments/conditions-we-treat/congenital-hypothyroidism
• Illinois Department of Public Health http://www.idph.state.il.us/HealthWellness/fs/congenitalhypo.htm
• MalaCards: congenital hypothyroidism http://www.malacards.org/card/congenital_hypothyroidism
• Orphanet: Congenital hypothyroidism https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=442
• Utah Department of Health
 http://health.utah.gov/newbornscreening/Providers/Disorders/CHYPArticle.htm

• Virginia Department of Health

• Washington State Department of Health

Patient Support and Advocacy Resources

• American Thyroid Association
 https://www.thyroid.org/

• The MAGIC Foundation
 https://www.magicfoundation.org/Growth-Disorders/Thyroid-Disorders/

ClinicalTrials.gov

• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22congenital+hypothyroidism%22

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28congenital+hypothyroidism%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

OMIM

• HYPOTHYROIDISM, CONGENITAL, NONGOITROUS, 1
 http://omim.org/entry/275200

• HYPOTHYROIDISM, CONGENITAL, NONGOITROUS, 2
 http://omim.org/entry/218700

• THYROID DYSHORMONOGENSESIS 1
 http://omim.org/entry/274400

• THYROID DYSHORMONOGENSESIS 2A
 http://omim.org/entry/274500

• THYROID DYSHORMONOGENSESIS 5
 http://omim.org/entry/274900

• THYROID DYSHORMONOGENSESIS 6
 http://omim.org/entry/607200
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21543982
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263319/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23698639

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20537182
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903524/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25231445

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25231444

Reprinted from Genetics Home Reference:

Reviewed: September 2015
Published: June 12, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services