Congenital bilateral absence of the vas deferens

Congenital bilateral absence of the vas deferens occurs in males when the tubes that carry sperm out of the testes (the vas deferens) fail to develop properly. Although the testes usually develop and function normally, sperm cannot be transported through the vas deferens to become part of semen. As a result, men with this condition are unable to father children (infertile) unless they use assisted reproductive technologies. This condition has not been reported to affect sex drive or sexual performance.

This condition can occur alone or as a sign of cystic fibrosis, an inherited disease of the mucus glands. Cystic fibrosis causes progressive damage to the respiratory system and chronic digestive system problems. Many men with congenital bilateral absence of the vas deferens do not have the other characteristic features of cystic fibrosis; however, some men with this condition may experience mild respiratory or digestive problems.

Frequency

This condition is responsible for 1 percent to 2 percent of all infertility in men.

Causes

Mutations in the CFTR gene cause congenital bilateral absence of the vas deferens.

More than half of all men with this condition have mutations in the CFTR gene. Mutations in this gene also cause cystic fibrosis. When congenital bilateral absence of the vas deferens occurs with CFTR mutations and without other features of cystic fibrosis, the condition is considered a form of atypical cystic fibrosis.

The protein made from the CFTR gene forms a channel that transports negatively charged particles called chloride ions into and out of cells. The flow of chloride ions helps control the movement of water in tissues, which is necessary for the production of thin, freely flowing mucus. Mucus is a slippery substance that lubricates and protects the linings of the airways, digestive system, reproductive system, and other organs and tissues.

Mutations in the CFTR gene disrupt the function of the chloride channels, preventing them from regulating the flow of chloride ions and water across cell membranes. As a result, cells in the male genital tract produce mucus that is abnormally thick and sticky. This mucus clogs the vas deferens as they are forming, causing them to deteriorate before birth.

In instances of congenital bilateral absence of the vas deferens without a mutation in the CFTR gene, the cause of this condition is often unknown. Some cases are associated with other structural problems of the urinary tract.
Inheritance Pattern

When this condition is caused by mutations in the CFTR gene, it is inherited in an autosomal recessive pattern. This pattern of inheritance means that both copies of the gene in each cell have a mutation. Men with this condition who choose to father children through assisted reproduction have an increased risk of having a child with cystic fibrosis. If congenital absence of the vas deferens is not caused by mutations in CFTR, the risk of having children with cystic fibrosis is not increased.

Other Names for This Condition

• absence of vas deferens
• absent vasa
• CAVD
• CBAVD
• congenital absence of vas deferens
• congenital aplasia of vas deferens
• congenital bilateral absence of vas deferens

Diagnosis & Management

Genetic Testing Information

• What is genetic testing?
/primer/testing/genetictesting

• Genetic Testing Registry: Congenital bilateral aplasia of vas deferens from CFTR mutation

Other Diagnosis and Management Resources

• GeneReview: Cystic Fibrosis and Congenital Absence of the Vas Deferens
https://www.ncbi.nlm.nih.gov/books/NBK1250

• MedlinePlus Encyclopedia: Infertility
https://medlineplus.gov/ency/article/001191.htm

• MedlinePlus Encyclopedia: Pathway of sperm (image)
https://medlineplus.gov/ency/imagepages/19073.htm

• MedlinePlus Health Topic: Assisted Reproductive Technology
https://medlineplus.gov/assistedreproductivetechnology.html
Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Infertility
 https://medlineplus.gov/ency/article/001191.htm

• Encyclopedia: Pathway of sperm (image)
 https://medlineplus.gov/ency/imagepages/19073.htm

• Health Topic: Assisted Reproductive Technology
 https://medlineplus.gov/assistedreproductivetechnology.html

• Health Topic: Male Infertility
 https://medlineplus.gov/maleinfertility.html

Genetic and Rare Diseases Information Center

• Congenital bilateral absence of the vas deferens

Educational Resources

• American Society for Reproductive Medicine: Male Infertility
 https://www.reproductivefacts.org/topics/topics-index/male-infertility/

• MalaCards: vas deferens, congenital bilateral aplasia of
 https://www.malacards.org/card/vas_deferens_congenital_bilateral_aplasia_of

• Orphanet: Congenital bilateral absence of vas deferens
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=48

Patient Support and Advocacy Resources

• Cystic Fibrosis Canada
 https://www.cysticfibrosis.ca/

• Path2Parenthood
 http://www.path2parenthood.org/article/understanding-male-infertility

• Resolve: The National Infertility Association
 https://resolve.org/

Clinical Information from GeneReviews

• Cystic Fibrosis and Congenital Absence of the Vas Deferens
 https://www.ncbi.nlm.nih.gov/books/NBK1250
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28absence+of+vas+deferens%5BTIAB%5D%29+OR+%28absent+vasa%5BTIAB%5D%29+OR+%28cavd%5BTIAB%5D%29+OR+%28cbavd%5BTIAB%5D%29+OR+%28congenital+absence+of+vas+deferens%5BTIAB%5D%29+OR+%28congenital+aplasia+of+vas+deferens%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- VAS DEFERENS, CONGENITAL BILATERAL APLASIA OF
 http://omim.org/entry/277180

Medical Genetics Database from MedGen

- Congenital bilateral absence of the vas deferens

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15379964

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11119745

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14551163

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15297887

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16217177

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11737931
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC64805/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301428

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17050329

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29216686
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745269/

Reprinted from Genetics Home Reference:

Reviewed: October 2018
Published: February 11, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services