Complement component 2 deficiency

Complement component 2 deficiency is a disorder that causes the immune system to malfunction, resulting in a form of immunodeficiency. Immunodeficiencies are conditions in which the immune system is not able to protect the body effectively from foreign invaders such as bacteria and viruses. People with complement component 2 deficiency have a significantly increased risk of recurrent bacterial infections, specifically of the lungs (pneumonia), the membrane covering the brain and spinal cord (meningitis), and the blood (sepsis), which may be life-threatening. These infections most commonly occur in infancy and childhood and become less frequent in adolescence and adulthood.

Complement component 2 deficiency is also associated with an increased risk of developing autoimmune disorders such as systemic lupus erythematosus (SLE) or vasculitis. Autoimmune disorders occur when the immune system malfunctions and attacks the body's tissues and organs. Between 10 and 20 percent of individuals with complement component 2 deficiency develop SLE. Females with complement component 2 deficiency are more likely to have SLE than affected males, but this is also true of SLE in the general population.

The severity of complement component 2 deficiency varies widely. While some affected individuals experience recurrent infections and other immune system difficulties, others do not have any health problems related to the disorder.

Frequency

In Western countries, complement component 2 deficiency is estimated to affect 1 in 20,000 individuals; its prevalence in other areas of the world is unknown.

Causes

Complement component 2 deficiency is caused by mutations in the C2 gene. This gene provides instructions for making the complement component 2 protein, which helps regulate a part of the body's immune response known as the complement system. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. The complement component 2 protein is involved in the pathway that turns on (activates) the complement system when foreign invaders, such as bacteria, are detected.

The most common C2 gene mutation, which is found in more than 90 percent of people with complement component 2 deficiency, prevents the production of complement component 2 protein. A lack of this protein impairs activation of the complement pathway. As a result, the complement system's ability to fight infections is diminished. It is unclear how complement component 2 deficiency leads to an increase in
autoimmune disorders. Researchers speculate that the dysfunctional complement system is unable to distinguish what it should attack, and it sometimes attacks normal tissues, leading to autoimmunity. Alternatively, the dysfunctional complement system may perform partial attacks on invading molecules, which leaves behind foreign fragments that are difficult to distinguish from the body's tissues, so the complement system sometimes attacks the body's own cells. It is likely that other factors, both genetic and environmental, play a role in the variability of the signs and symptoms of complement component 2 deficiency.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- C2 deficiency
- C2D
- complement 2 deficiency

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22complement+component+2+deficiency%22+OR+%22complement+2+deficiency%22

Other Diagnosis and Management Resources

- Primary Immune Deficiency Treatment Consortium https://www.rarediseasesnetwork.org/cms/PIDTC
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Complement
 https://medlineplus.gov/ency/article/003456.htm

- Encyclopedia: Immunodeficiency Disorders
 https://medlineplus.gov/ency/article/000818.htm

- Health Topic: Immune System and Disorders
 https://medlineplus.gov/immunesystemanddisorders.html

- Health Topic: Lupus
 https://medlineplus.gov/lupus.html

Genetic and Rare Diseases Information Center

- Complement component 2 deficiency

Additional NIH Resources

- National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases

Educational Resources

- Boston Children’s Hospital: Primary Immunodeficiency
 http://www.childrenshospital.org/conditions-and-treatments/conditions/p/primary-immunodeficiency

- Johns Hopkins Medicine: Allergies and the Immune System

- KidsHealth from Nemours: Immune System

- MalaCards: complement component 2 deficiency
 https://www.malacards.org/card/complement_component_2_deficiency

- Orphanet: Immunodeficiency due to a classical component pathway complement deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=169147
Patient Support and Advocacy Resources

• Immune Deficiency Foundation
 https://primaryimmune.org/

• Primary Immunodeficiency Resource Center
 http://www.info4pi.org/

• Resource List from the University of Kansas Medical Center: Immune Deficiency Conditions
 http://www.kumc.edu/gec/support/immune.html

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28complement+component+2+deficiency%29+OR+%28c2+deficiency%5BTIAB%5D%29+OR+%28complement+2+deficiency%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human
 %5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• COMPLEMENT COMPONENT 2 DEFICIENCY
 http://omim.org/entry/217000

Medical Genetics Database from MedGen

• Complement component 2 deficiency

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17478473

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15643297

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16026838

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21624663
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18075790

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15100659

Reviewed: June 2014
Published: August 20, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services