CDKL5 deficiency disorder

CDKL5 deficiency disorder is characterized by seizures that begin in infancy, followed by significant delays in many aspects of development.

Seizures in CDKL5 deficiency disorder usually begin within the first 3 months of life, and they can appear as early as the first week after birth. The types of seizures change with age, and they usually follow a predictable pattern. Seizures occur daily in most affected individuals, and they are resistant to treatment.

Development is impaired in children with CDKL5 deficiency disorder. Most have severe intellectual disability and little or no speech. The development of gross motor skills, such as sitting, standing, and walking, is delayed. About one-third of affected individuals are able to walk independently. Fine motor skills, such as picking up small objects with the fingers, are also impaired; about half of affected individuals have purposeful use of their hands.

Other common features of CDKL5 deficiency disorder include repetitive hand movements (stereotypies), such as clapping, hand licking, and hand sucking; tooth grinding (bruxism); disrupted sleep; feeding difficulties; and gastrointestinal problems including constipation and backflow of acidic stomach contents into the esophagus (gastroesophageal reflux). Some affected individuals have episodes of irregular breathing. Distinctive facial features in some people with CDKL5 deficiency disorder include a high and broad forehead, large and deep-set eyes, a well-defined space between the nose and upper lip (philtrum), full lips, widely spaced teeth, and a high roof of the mouth (palate). Other physical differences can also occur, such as an unusually small head size (microcephaly), side-to-side curvature of the spine (scoliosis), and tapered fingers.

About 90 percent of people diagnosed with CDKL5 deficiency disorder are female. Affected males tend to have more severe developmental disabilities, including profound intellectual disability and almost no development of gross and fine motor skills.

CDKL5 deficiency disorder was previously classified as an atypical form of Rett syndrome. These conditions have overlapping features, including seizures, intellectual disability, and other problems with development. However, the signs and symptoms associated with CDKL5 deficiency disorder and its genetic cause are distinct from those of Rett syndrome, and CDKL5 deficiency disorder is now considered a separate condition.
Frequency

CDKL5 deficiency disorder appears to be a rare condition. More than 1,000 cases have been reported worldwide.

Genetic Changes

As its name suggests, CDKL5 deficiency disorder is caused by mutations in the CDKL5 gene. This gene provides instructions for making a protein that is essential for normal brain development and function. It is likely involved in the formation, growth, and movement (migration) of nerve cells (neurons) in the brain.

Mutations in the CDKL5 gene reduce the amount of functional CDKL5 protein or alter its activity in neurons. A shortage (deficiency) of CDKL5 or impairment of its function disrupts brain development, but it is unclear how these changes cause the specific features of CDKL5 deficiency disorder.

Inheritance Pattern

This condition is inherited in an X-linked dominant pattern. The CDKL5 gene is located on the X chromosome, which is one of the two sex chromosomes. In females (who have two X chromosomes), a mutation in one of the two copies of the CDKL5 gene in each cell causes the disorder. In males (who have only one X chromosome), a mutation in the only copy of the gene causes the disorder. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Almost all cases of this condition result from new (de novo) mutations in the CDKL5 gene that occur during the formation of reproductive cells (eggs or sperm) or in early embryonic development. These cases occur in people with no history of the disorder in their family.

Researchers suspect that the signs and symptoms of CDKL5 deficiency disorder vary in severity in part because of a process called X-inactivation. Early in embryonic development in females, one of the two X chromosomes is permanently inactivated in somatic cells (cells other than egg and sperm cells). X-inactivation ensures that females, like males, have only one active copy of the X chromosome in each body cell. Usually X-inactivation occurs randomly, such that each X chromosome is active in about half of the body cells. This means that about half of cells have an active X chromosome with a CDKL5 gene mutation, and half have an active X chromosome without the mutation. However, groups of cells that arise from a single original cell have the same copy of the X chromosome inactivated, so the distribution is not exactly half and half. The proportion of neurons in the brain that have the active X chromosome with the mutation helps determine how severe the features of the condition are in a given individual. Females with a higher percentage of neurons with the mutation have more severe signs and symptoms than females with a lower percentage of neurons with the mutation.
Because males have only one X chromosome in each cell, the mutated version of the CDKL5 gene is active in all cells. Affected males have no normal copies of the gene. This difference likely helps explain why CDKL5 deficiency disorder is more severe in males.

Other Names for This Condition

- CDKL5 deficiency
- CDKL5 disorder
- CDKL5 encephalopathy
- CDKL5-related epilepsy
- CDKL5-related epileptic encephalopathy
- early infantile epileptic encephalopathy 2

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Early infantile epileptic encephalopathy 2

Other Diagnosis and Management Resources

- International Foundation for CDKL5 Research: CDKL5 Centers of Excellence
 https://www.cdkl5.com/for-families/cdkl5-centers-excellence/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26387070

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html

- Drug Therapy
 https://medlineplus.gov/drugtherapy.html

- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus
• Health Topic: Developmental Disabilities
 https://medlineplus.gov/developmentaldisabilities.html
• Health Topic: Epilepsy
 https://medlineplus.gov/epilepsy.html
• Health Topic: Rett Syndrome
 https://medlineplus.gov/rettsyndrome.html

Genetic and Rare Diseases Information Center
• Atypical Rett syndrome
• CDKL5-related disorder
 https://rarediseases.info.nih.gov/diseases/12173/cdkl5-related-disorder

Additional NIH Resources
• National Institute of Neurological Disorders and Stroke: Infantile Spasms
 Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Infantile-Spasms-Information-Page

Educational Resources
• Centers for Disease Control and Prevention: Intellectual Disability Fact Sheet
• Disease InfoSearch: Atypical Rett syndrome
 http://www.diseaseinfosearch.org/Atypical+Rett+syndrome/6293
• International Foundation for CDKL5 Research: CDKL5 Disorder: An Introductory Guide
• MalaCards: cdkl5-related disorder
 http://www.malacards.org/card/cdkl5_related_disorder
• Orphanet: Atypical Rett syndrome
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=3095
Patient Support and Advocacy Resources

- CDKL5 International Registry & Database
 https://www.cdkl5.com/cdkl5-international-registry-database/

- CDKL5 UK
 http://www.curecdkl5.org/

- Citizens United for Research in Epilepsy (CURE)
 https://www.cureepilepsy.org/

- International Foundation for CDKL5 Research
 https://www.cdkl5.com/

- Loulou Foundation (UK)
 http://www.louloufoundation.org/

- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/cdkl5/

- Telethon Kids Institute (Australia)
 https://rett.telethonkids.org.au/about/cdkl5-disorder/

ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22CDKL5+deficiency+disorder%22+OR+%22CDKL5+disorder%22+OR+%22infantile+spasms%22

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28CDKL5%5BTI%5D%29+AND+%28%28deficiency%5BTIAB%5D%29+OR+%28disorder%5BTIAB%5D%29+OR+%28encephalopathy%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

MedGen

- Early infantile epileptic encephalopathy 2
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22670135
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366705/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18266744

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22678952

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27528505

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22872100
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573195/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22832775

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27080038
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832563/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28103894
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248472/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22264704