Blepharophimosis, ptosis, and epicanthus inversus syndrome

Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a condition that mainly affects development of the eyelids. People with this condition have a narrowing of the eye opening (blepharophimosis), droopy eyelids (ptosis), and an upward fold of the skin of the lower eyelid near the inner corner of the eye (epicanthus inversus). In addition, there is an increased distance between the inner corners of the eyes (telecanthus). Because of these eyelid abnormalities, the eyelids cannot open fully, and vision may be limited.

Other structures in the eyes and face may be mildly affected by BPES. Affected individuals are at an increased risk of developing vision problems such as nearsightedness (myopia) or farsightedness (hyperopia) beginning in childhood. They may also have eyes that do not point in the same direction (strabismus) or "lazy eye" (amblyopia) affecting one or both eyes. People with BPES may also have distinctive facial features including a broad nasal bridge, low-set ears, or a shortened distance between the nose and upper lip (a short philtrum).

There are two types of BPES, which are distinguished by their signs and symptoms. Both types I and II include the eyelid malformations and other facial features. Type I is also associated with an early loss of ovarian function (primary ovarian insufficiency) in women, which causes their menstrual periods to become less frequent and eventually stop before age 40. Primary ovarian insufficiency can lead to difficulty conceiving a child (subfertility) or a complete inability to conceive (infertility).

Frequency

The prevalence of BPES is unknown.

Causes

Mutations in the FOXL2 gene cause BPES types I and II. The FOXL2 gene provides instructions for making a protein that is active in the eyelids and ovaries. The FOXL2 protein is likely involved in the development of muscles in the eyelids. Before birth and in adulthood, the protein regulates the growth and development of certain ovarian cells and the breakdown of specific molecules.

It is difficult to predict the type of BPES that will result from the many FOXL2 gene mutations. However, mutations that result in a partial loss of FOXL2 protein function generally cause BPES type II. These mutations probably impair regulation of normal development of muscles in the eyelids, resulting in malformed eyelids that cannot open fully. Mutations that lead to a complete loss of FOXL2 protein function often cause
BPES type I. These mutations impair the regulation of eyelid development as well as various activities in the ovaries, resulting in eyelid malformation and abnormally accelerated maturation of certain ovarian cells and the premature death of egg cells.

Inheritance Pattern

This condition is typically inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family.

Other Names for This Condition

- blepharophimosis syndrome
- blepharophimosis, ptosis, and epicanthus inversus
- BPES

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting

Other Diagnosis and Management Resources

Additional Information & Resources

Health Information from MedlinePlus

• Health Topic: Eyelid Disorders
https://medlineplus.gov/eyeliddisorders.html

• Health Topic: Primary Ovarian Insufficiency
https://medlineplus.gov/primaryovarianinsufficiency.html

Genetic and Rare Diseases Information Center

• Blepharophimosis-epicanthus inversus-ptosis syndrome

Additional NIH Resources

• National Institute of Child Health and Human Development: Primary Ovarian Insufficiency
https://www.nichd.nih.gov/health/topics/poi

Educational Resources

• MalaCards: blepharophimosis, ptosis, and epicanthus inversus
https://www.malacards.org/card/blepharophimosis_ptosis_and_epicanthus_inversus

• Orphanet: Blepharophimosis - epicanthus inversus - ptosis
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=126

• The University of Arizona Health Sciences: Hereditary Ocular Disease
https://disorders.eyes.arizona.edu/handouts/bpes-syndrome

• University of Iowa Health Care
http://webeye.ophth.uiowa.edu/eyeforum/cases-i/case114/BPES.html

• Washington Univeristy, St. Louis: Neuromuscular Disease Center
https://neuromuscular.wustl.edu/syncm.html#blepharophimosis

Patient Support and Advocacy Resources

• Metabolic Support UK
https://www.metabolicsupportuk.org/

• National Organization for Rare Disorders (NORD)
https://rarediseases.org/rare-diseases/blepharophimosis-ptosis-epicanthus-inversus-syndrome/

• RESOLVE: The National Infertility Association: Premature Ovarian Failure
https://resolve.org/infertility-101/medical-conditions/premature-ovarian-failure/

• University of Kansas Medical Center Resource List
http://www.kumc.edu/gec/support/blepharo.html
Clinical Information from GeneReviews

- Blepharophimosis, Ptosis, and Epicanthus Inversus
 https://www.ncbi.nlm.nih.gov/books/NBK1441

Scientific Articles on PubMed

- PubMed
 +epicanthus+inversus%5BTIAB%5D%29+OR+%28blepharophimosis+syndrome
 %5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND
 +%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- BLEPHAROPHIMOSIS, PTOSIS, AND EPICANTHUS INVERSUS
 http://omim.org/entry/110100

Medical Genetics Database from MedGen

- Blepharophimosis, ptosis, and epicanthus inversus

Sources for This Summary

- Allen CE, Rubin PA. Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES): clinical
 IIO.0b013e3181694eee. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18427257

 AW, Hennekam R, Meire F, Oyen N, Wilson LC, Barel D, Clayton-Smith J, de Ravel T, Decock C,
 Wieczorek D, Veitia RA, De Paepe A, De Baere E. Identification of 34 novel and 56 known FOXL2
 10.1002/humu.20819. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18642388

- Beysen D, De Paepe A, De Baere E. FOXL2 mutations and genomic rearrangements in BPES.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18726931

- Beysen D, Raes J, Leroy BP, Lucassen A, Yates JR, Clayton-Smith J, Ilyina H, Brooks SS, Christin-
 Spitt M, Thomson J, Van de Peer Y, Veitia RA, De Paepe A, De Baere E. Deletions involving long-
 range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-
 Epub 2005 Jun 16.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15962237
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224524/

- Choi KH, Kyung S, Oh SY. The factors influencing visual development in blepharophimosis-ptosis-
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17022162
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20232352

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19515849

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17430514

Reprinted from Genetics Home Reference:

Reviewed: October 2013
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services