Beta thalassemia

Beta thalassemia is a blood disorder that reduces the production of hemoglobin. Hemoglobin is the iron-containing protein in red blood cells that carries oxygen to cells throughout the body.

In people with beta thalassemia, low levels of hemoglobin lead to a lack of oxygen in many parts of the body. Affected individuals also have a shortage of red blood cells (anemia), which can cause pale skin, weakness, fatigue, and more serious complications. People with beta thalassemia are at an increased risk of developing abnormal blood clots.

Beta thalassemia is classified into two types depending on the severity of symptoms: thalassemia major (also known as Cooley’s anemia) and thalassemia intermedia. Of the two types, thalassemia major is more severe.

The signs and symptoms of thalassemia major appear within the first 2 years of life. Children develop life-threatening anemia. They do not gain weight and grow at the expected rate (failure to thrive) and may develop yellowing of the skin and whites of the eyes (jaundice). Affected individuals may have an enlarged spleen, liver, and heart, and their bones may be misshapen. Some adolescents with thalassemia major experience delayed puberty. Many people with thalassemia major have such severe symptoms that they need frequent blood transfusions to replenish their red blood cell supply. Over time, an influx of iron-containing hemoglobin from chronic blood transfusions can lead to a buildup of iron in the body, resulting in liver, heart, and hormone problems.

Thalassemia intermedia is milder than thalassemia major. The signs and symptoms of thalassemia intermedia appear in early childhood or later in life. Affected individuals have mild to moderate anemia and may also have slow growth and bone abnormalities.

Frequency

Beta thalassemia is a fairly common blood disorder worldwide. Thousands of infants with beta thalassemia are born each year. Beta thalassemia occurs most frequently in people from Mediterranean countries, North Africa, the Middle East, India, Central Asia, and Southeast Asia.

Genetic Changes

Mutations in the HBB gene cause beta thalassemia. The HBB gene provides instructions for making a protein called beta-globin. Beta-globin is a component (subunit) of hemoglobin. Hemoglobin consists of four protein subunits, typically two subunits of beta-globin and two subunits of another protein called alpha-globin.
Some mutations in the \textit{HBB} gene prevent the production of any beta-globin. The absence of beta-globin is referred to as beta-zero (B0) thalassemia. Other \textit{HBB} gene mutations allow some beta-globin to be produced but in reduced amounts. A reduced amount of beta-globin is called beta-plus (B+) thalassemia. Having either B0 or B+ thalassemia does not necessarily predict disease severity, however; people with both types have been diagnosed with thalassemia major and thalassemia intermedia.

A lack of beta-globin leads to a reduced amount of functional hemoglobin. Without sufficient hemoglobin, red blood cells do not develop normally, causing a shortage of mature red blood cells. The low number of mature red blood cells leads to anemia and other associated health problems in people with beta thalassemia.

\textbf{Inheritance Pattern}

Thalassemia major and thalassemia intermedia are inherited in an autosomal recessive pattern, which means both copies of the \textit{HBB} gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Sometimes, however, people with only one \textit{HBB} gene mutation in each cell develop mild anemia. These mildly affected people are said to have thalassemia minor.

In a small percentage of families, the \textit{HBB} gene mutation is inherited in an autosomal dominant manner. In these cases, one copy of the altered gene in each cell is sufficient to cause the signs and symptoms of beta thalassemia.

\textbf{Other Names for This Condition}

- erythroblastic anemia
- Mediterranean anemia
- microcytemia, beta type
- thalassemia, beta type

\textbf{Diagnosis & Management}

\textbf{Genetic Testing}

- Genetic Testing Registry: beta Thalassemia
- Genetic Testing Registry: Beta-thalassemia, dominant inclusion body type
Other Diagnosis and Management Resources

• GeneReview: Beta-Thalassemia
 https://www.ncbi.nlm.nih.gov/books/NBK1426

• MedlinePlus Encyclopedia: Thalassemia
 https://medlineplus.gov/ency/article/000587.htm

General Information from MedlinePlus

• Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html

• Drug Therapy
 https://medlineplus.gov/drugtherapy.html

• Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html

• Palliative Care
 https://medlineplus.gov/palliativecare.html

• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

• Encyclopedia: Thalassemia
 https://medlineplus.gov/ency/article/000587.htm

• Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html

• Health Topic: Thalassemia
 https://medlineplus.gov/thalassemia.html

Genetic and Rare Diseases Information Center

• Beta-thalassemia
 https://rarediseases.info.nih.gov/diseases/871/beta-thalassemia

Additional NIH Resources

• National Heart, Lung, and Blood Institute
 https://www.nhlbi.nih.gov/health-topics/thalassemias

• National Human Genome Research Institute
 https://www.genome.gov/10001221/
Educational Resources

- Boston Children's Hospital
 http://www.childrenshospital.org/conditions-and-treatments/conditions/t/thalassemia
- Centers for Disease Control and Prevention
 https://www.cdc.gov/ncbddd/thalassemia/
- Centre for Genetics Education (Australia)
- Cold Spring Harbor Laboratory: Your Genes Your Health
 http://www.ygyh.org/thal/whatisit.htm
- Disease InfoSearch: Beta Thalassemia
 http://www.diseaseinfosearch.org/Beta-Thalassemia/814
- Genomics Education Programme (UK)
 https://www.genomicseducation.hee.nhs.uk/resources/genetic-conditions-factsheets/item/157-retinoblastoma/
- MalaCards: thalassemia
 http://www.malacards.org/card/thalassemia
- Merck Manual Consumer Version
 https://www.merckmanuals.com/home/blood-disorders/anemia/thalassemias
- Orphanet: Beta-thalassemia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=848
- Orphanet: Beta-thalassemia intermedia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=231222
- Orphanet: Beta-thalassemia major
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=231214
- University of Rochester Medical Center
 https://www.urmc.rochester.edu/encyclopedia/content.aspx?
 ContentTypeID=85&ContentID=P00081
- Washington State Department of Health

Patient Support and Advocacy Resources

- Cooley's Anemia Foundation
 http://www.thalassemia.org/
- March of Dimes
 https://www.marchofdimes.org/baby/thalassemia.aspx
• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/thalassemia-major/
• The Norton & Elaine Sarnoff Center for Jewish Genetics
• University of Kansas Medical Center Resource List
 http://www.kumc.edu/gec/support/thalass.html

GeneReviews
• Beta-Thalassemia
 https://www.ncbi.nlm.nih.gov/books/NBK1426

ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22beta+thalassemia%22

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28beta+thalassemia%5BTI%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days+22%5Bdp%5D

OMIM
• BETA-THALASSEMIA
 http://omim.org/entry/613985
• BETA-THALASSEMIA, DOMINANT INCLUSION BODY TYPE
 http://omim.org/entry/603902

MedGen
• beta Thalassemia

Sources for This Summary
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21493114
• OMIM: BETA-THALASSEMIA, DOMINANT INCLUSION BODY TYPE
 http://omim.org/entry/603902
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20098328

National Human Genome Research Institute
https://www.genome.gov/

Reprinted from Genetics Home Reference:

Reviewed: September 2015
Published: May 22, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services