Ataxia neuropathy spectrum

Ataxia neuropathy spectrum is part of a group of conditions called the POLG-related disorders. The conditions in this group feature a range of similar signs and symptoms involving muscle-, nerve-, and brain-related functions. Ataxia neuropathy spectrum now includes the conditions previously called mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO).

As the name implies, people with ataxia neuropathy spectrum typically have problems with coordination and balance (ataxia) and disturbances in nerve function (neuropathy). The neuropathy can be classified as sensory, motor, or a combination of the two (mixed). Sensory neuropathy causes numbness, tingling, or pain in the arms and legs, and motor neuropathy refers to disturbance in the nerves used for muscle movement.

Most people with ataxia neuropathy spectrum also have severe brain dysfunction (encephalopathy) and seizures. Some affected individuals have weakness of the external muscles of the eye (ophthalmoplegia), which leads to drooping eyelids (ptosis). Other signs and symptoms can include involuntary muscle twitches (myoclonus), liver disease, depression, migraine headaches, or blindness.

Frequency

The prevalence of ataxia neuropathy spectrum is unknown.

Causes

Ataxia neuropathy spectrum is caused by mutations in the POLG gene or, rarely, the TWNK gene.

The POLG gene provides instructions for making one part, the alpha subunit, of a protein called polymerase gamma (pol γ). The TWNK gene provides instructions for making a protein called Twinkle. Pol γ and Twinkle function in mitochondria, which are structures within cells that use oxygen to convert the energy from food into a form cells can use. Mitochondria each contain a small amount of DNA, known as mitochondrial DNA (mtDNA), which is essential for the normal function of these structures. Pol γ and Twinkle are both integral to the process of DNA replication by which new copies of mtDNA are produced.

Mutated pol γ or mutated Twinkle reduce mtDNA replication. Although the mechanisms are unknown, mutations in the POLG gene often result in fewer copies of mtDNA (mtDNA depletion), and mutations in the TWNK gene often result in deletions of large regions of mtDNA (mtDNA deletion). MtDNA depletion or deletion occurs most commonly in muscle, brain, or liver cells. MtDNA depletion causes a decrease in
cellular energy, which could account for the signs and symptoms of ataxia neuropathy spectrum. It is unclear what role mtDNA deletions play in the signs and symptoms of the condition.

Inheritance Pattern

Ataxia neuropathy spectrum can have different inheritance patterns depending on the associated gene.

Mutations in the POLG gene cause a form of the condition that is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Mutations in the TWNK gene cause a form of the condition that is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Other Names for This Condition

- ANS
- MIRAS
- mitochondrial recessive ataxia syndrome
- SANDO
- sensory ataxia neuropathy dysarthria and ophthalmoplegia

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting
- Genetic Testing Registry: Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22ataxia+neuropathy+spectrum %22+OR+%22Mitochondrial+Diseases%22
Other Diagnosis and Management Resources

- GeneReview: POLG-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK26471
- United Mitochondrial Disease Foundation: Getting a Diagnosis
 https://www.umdf.org/what-is-mitochondrial-disease/getting-a-diagnosis/

Additional Information & Resources

Health Information from MedlinePlus

- Health Topic: Balance Problems
 https://medlineplus.gov/balanceproblems.html
- Health Topic: Degenerative Nerve Diseases
 https://medlineplus.gov/degenerativenervediseases.html
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
- Health Topic: Movement Disorders
 https://medlineplus.gov/movementdisorders.html
- Health Topic: Seizures
 https://medlineplus.gov/seizures.html

Genetic and Rare Diseases Information Center

- Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis

Additional NIH Resources

- National Institutes of Health Rare Diseases Clinical Research Network: North American Mitochondrial Disease Consortium
 https://www.rarediseasesnetwork.org/cms/NAMDC

Educational Resources

- MalaCards: ataxia neuropathy spectrum
 https://www.malacards.org/card/ataxia_neuropathy_spectrum
- Mayo Clinic: North American Mitochondrial Disease Consortium Patient Registry and Biorepository (NAMDC)
 https://www.mayo.edu/research/clinical-trials/cls-20409244
- Orphanet: Sensory atactic neuropathy-dysarthria-ophthalmoparesis syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=70595
Patient Support and Advocacy Resources

- MitoAction
 https://www.mitoaction.org/
- Muscular Dystrophy Association: Mitochondrial Myopathies
 https://www.mda.org/disease/mitochondrial-myopathies
- National Ataxia Foundation
 https://ataxia.org/
- United Mitochondrial Disease Foundation: What is Mitochondrial Disease?
 https://www.umdf.org/what-is-mitochondrial-disease/

Clinical Information from GeneReviews

- POLG-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK26471

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28miras%5BTIAB%5D%29+OR+%28sando%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- SENSORY ATAXIC NEUROPATHY, DYSARTHRIA, AND OPHTHALMOPARESIS
 http://omim.org/entry/607459

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16024923
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301791
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15668446
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20220442
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1998336
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1682992/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18415670

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20927567
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046768/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12565911

Reprinted from Genetics Home Reference:

Reviewed: June 2011
Published: October 15, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services