Apert syndrome

Apert syndrome is a genetic disorder characterized by the premature fusion of certain skull bones (craniosynostosis). This early fusion prevents the skull from growing normally and affects the shape of the head and face. In addition, a varied number of fingers and toes are fused together (syndactyly).

Many of the characteristic facial features of Apert syndrome result from the premature fusion of the skull bones. The head is unable to grow normally, which leads to a sunken appearance in the middle of the face, bulging and wide-set eyes, a beaked nose, and an underdeveloped upper jaw leading to crowded teeth and other dental problems. Shallow eye sockets can cause vision problems. Early fusion of the skull bones also affects the development of the brain, which can disrupt intellectual development. Cognitive abilities in people with Apert syndrome range from normal to mild or moderate intellectual disability.

Individuals with Apert syndrome have webbed or fused fingers and toes. The severity of the fusion varies; at a minimum, three digits on each hand and foot are fused together. In the most severe cases, all of the fingers and toes are fused. Less commonly, people with this condition may have extra fingers or toes (polydactyly). Additional signs and symptoms of Apert syndrome can include hearing loss, unusually heavy sweating (hyperhidrosis), oily skin with severe acne, patches of missing hair in the eyebrows, fusion of spinal bones in the neck (cervical vertebrae), and recurrent ear infections that may be associated with an opening in the roof of the mouth (a cleft palate).

Frequency

Apert syndrome affects an estimated 1 in 65,000 to 88,000 newborns.

Causes

Mutations in the FGFR2 gene cause Apert syndrome. This gene produces a protein called fibroblast growth factor receptor 2. Among its multiple functions, this protein signals immature cells to become bone cells during embryonic development. A mutation in a specific part of the FGFR2 gene alters the protein and causes prolonged signaling, which can promote the premature fusion of bones in the skull, hands, and feet.

Inheritance Pattern

Apert syndrome is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Almost all cases of Apert syndrome result from new mutations in the gene, and occur in people with no history of the disorder in their family. Individuals with Apert syndrome, however, can pass along the condition to the next generation.
Other Names for This Condition
- Acrocephalosyndactyly (Apert)

Diagnosis & Management

Genetic Testing Information
- What is genetic testing?
 https://primer/testing/genetictesting
- Genetic Testing Registry: Acrocephalosyndactyly type I

Research Studies from ClinicalTrials.gov
- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22Acrocephalosyndactylyia%22+OR+%22Apert+syndrome%22+OR+%22Craniosynostoses%22

Other Diagnosis and Management Resources
- GeneReview: FGFR-Related Craniosynostosis Syndromes
 https://www.ncbi.nlm.nih.gov/books/NBK1455
- MedlinePlus Encyclopedia: Apert syndrome
 https://medlineplus.gov/ency/article/001581.htm
- MedlinePlus Encyclopedia: Webbing of the fingers or toes
 https://medlineplus.gov/ency/article/003289.htm

Additional Information & Resources

Health Information from MedlinePlus
- Encyclopedia: Apert syndrome
 https://medlineplus.gov/ency/article/001581.htm
- Encyclopedia: Webbing of the fingers or toes
 https://medlineplus.gov/ency/article/003289.htm
- Health Topic: Craniofacial Abnormalities
 https://medlineplus.gov/craniofacialabnormalities.html

Genetic and Rare Diseases Information Center
- Apert syndrome
Additional NIH Resources
• National Institute of Neurological Disorders and Stroke: Craniosynostosis Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Craniosynostosis-Information-Page

Educational Resources
• Boston Children's Hospital
 http://www.childrenshospital.org/conditions-and-treatments/conditions/a/apert-syndrome
• Collaboration for Craniofacial Development and Disorders, Johns Hopkins University
 https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/pediatric_neurosurgery/conditions/craniosynostosis/
• MalaCards: Apert syndrome
 https://www.malacards.org/card/apert_syndrome
• Orphanet: Apert syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=87
• Orphanet: Craniosynostosis
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=1531
• Seattle Children's Hospital and Regional Medical Center
 https://www.seattlechildrens.org/conditions/chromosomal-genetic-conditions/apert-syndrome
• The Craniofacial Center, Dallas, Texas
 http://thecraniofacialcenter.com/apert.html
• U.C. Davis Children's Hospital

Patient Support and Advocacy Resources
• AmeriFace
 http://www.ameriface.org/
• Children's Craniofacial Association
 https://ccakids.org/
• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/apert-syndrome/
• Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/apert.html
Clinical Information from GeneReviews

- FGFR-Related Craniosynostosis Syndromes
 https://www.ncbi.nlm.nih.gov/books/NBK1455

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Acrocephalosyndactyly%5B
 MAJR%5D%29+AND+%28%28apert+syndrome%5BTIAB%5D%29+OR+
 %28acrocephalosyndactyly%5BTIAB%5D%29+OR+%28acrocephaly%5BTIAB
 %5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last
 +1440+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- APERT SYNDROME
 http://omim.org/entry/101200

Sources for This Summary

 T, Bodo M. Apert and Crouzon syndromes: clinical findings, genes and extracellular matrix. J
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15915098

- Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases.
 Front Biosci. 2005 May 1;10:1961-76. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15769677

- Ibrahimi OA, Chiu ES, McCarthy JG, Mohammadi M. Understanding the molecular basis of Apert
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15622262

- Robin NH, Falk MJ, Haldeman-Englert CR. FGFR-Related Craniosynostosis Syndromes. 1998
 Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews®
 www.ncbi.nlm.nih.gov/books/NBK1455/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301628

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15748556

- Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. FGFs, their receptors, and
 112(3):266-78. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12357470

- Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ,
 Pulley MJ, Rutland P, et al. Apert syndrome results from localized mutations of FGFR2 and is
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7719344