Angelman syndrome

Angelman syndrome is a complex genetic disorder that primarily affects the nervous system. Characteristic features of this condition include delayed development, intellectual disability, severe speech impairment, and problems with movement and balance (ataxia). Most affected children also have recurrent seizures (epilepsy) and a small head size (microcephaly). Delayed development becomes noticeable by the age of 6 to 12 months, and other common signs and symptoms usually appear in early childhood.

Children with Angelman syndrome typically have a happy, excitable demeanor with frequent smiling, laughter, and hand-flapping movements. Hyperactivity, a short attention span, and a fascination with water are common. Most affected children also have difficulty sleeping and need less sleep than usual.

With age, people with Angelman syndrome become less excitable, and the sleeping problems tend to improve. However, affected individuals continue to have intellectual disability, severe speech impairment, and seizures throughout their lives. Adults with Angelman syndrome have distinctive facial features that may be described as "coarse." Other common features include unusually fair skin with light-colored hair and an abnormal side-to-side curvature of the spine (scoliosis). The life expectancy of people with this condition appears to be nearly normal.

Frequency

Angelman syndrome affects an estimated 1 in 12,000 to 20,000 people.

Genetic Changes

Many of the characteristic features of Angelman syndrome result from the loss of function of a gene called \textit{UBE3A}. People normally inherit one copy of the \textit{UBE3A} gene from each parent. Both copies of this gene are turned on (active) in many of the body’s tissues. In certain areas of the brain, however, only the copy inherited from a person's mother (the maternal copy) is active. This parent-specific gene activation is caused by a phenomenon called genomic imprinting. If the maternal copy of the \textit{UBE3A} gene is lost because of a chromosomal change or a gene mutation, a person will have no active copies of the gene in some parts of the brain.

Several different genetic mechanisms can inactivate or delete the maternal copy of the \textit{UBE3A} gene. Most cases of Angelman syndrome (about 70 percent) occur when a segment of the maternal chromosome 15 containing this gene is deleted. In other cases (about 11 percent), Angelman syndrome is caused by a mutation in the maternal copy of the \textit{UBE3A} gene.
In a small percentage of cases, Angelman syndrome results when a person inherits two copies of chromosome 15 from his or her father (paternal copies) instead of one copy from each parent. This phenomenon is called paternal uniparental disomy. Rarely, Angelman syndrome can also be caused by a chromosomal rearrangement called a translocation, or by a mutation or other defect in the region of DNA that controls activation of the UBE3A gene. These genetic changes can abnormally turn off (inactivate) UBE3A or other genes on the maternal copy of chromosome 15.

The causes of Angelman syndrome are unknown in 10 to 15 percent of affected individuals. Changes involving other genes or chromosomes may be responsible for the disorder in these cases.

In some people who have Angelman syndrome, the loss of a gene called OCA2 is associated with light-colored hair and fair skin. The OCA2 gene is located on the segment of chromosome 15 that is often deleted in people with this disorder. However, loss of the OCA2 gene does not cause the other signs and symptoms of Angelman syndrome. The protein produced from this gene helps determine the coloring (pigmentation) of the skin, hair, and eyes.

Inheritance Pattern

Most cases of Angelman syndrome are not inherited, particularly those caused by a deletion in the maternal chromosome 15 or by paternal uniparental disomy. These genetic changes occur as random events during the formation of reproductive cells (eggs and sperm) or in early embryonic development. Affected people typically have no history of the disorder in their family.

Rarely, a genetic change responsible for Angelman syndrome can be inherited. For example, it is possible for a mutation in the UBE3A gene or in the nearby region of DNA that controls gene activation to be passed from one generation to the next.

Other Names for This Condition

- AS

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Angelman syndrome

Other Diagnosis and Management Resources

- GeneReview: Angelman Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1144

- MedlinePlus Encyclopedia: Speech Disorders
 https://medlineplus.gov/ency/article/001430.htm
General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Speech Disorders
 https://medlineplus.gov/ency/article/001430.htm
- Health Topic: Developmental Disabilities
 https://medlineplus.gov/developmentaldisabilities.html
- Health Topic: Movement Disorders
 https://medlineplus.gov/movementdisorders.html

Genetic and Rare Diseases Information Center

- Angelman syndrome
 https://rarediseases.info.nih.gov/diseases/5810/angelman-syndrome

Additional NIH Resources

- National Institute of Neurological Disorders and Stroke
 https://www.ninds.nih.gov/Disorders/All-Disorders/Angelman-Syndrome-Information-Page

Educational Resources

- Boston Children's Hospital
 http://www.childrenshospital.org/conditions-and-treatments/conditions/angelman-syndrome
- Disease InfoSearch: Angelman Syndrome
 http://www.diseaseinfosearch.org/Angelman+Syndrome/452
- Genetics Education Materials for School Success (GEMSS)
 https://www.gemssforschools.org/conditions/angelman/default
• MalaCards: angelman syndrome
 http://www.malacards.org/card/angelman_symdrome

• My46 Trait Profile
 https://www.my46.org/trait-document?trait=Angelman%20syndrome&type=profile

• Orphanet: Angelman syndrome
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=72

• Swedish Information Center for Rare Diseases
 http://www.socialstyrelsen.se/rarediseases/angelmansyndrome

Patient Support and Advocacy Resources
• Angelman Syndrome Foundation
 https://www.angelman.org/

• Canadian Angelman Syndrome Society
 https://www.angelmancanada.org/

• Foundation for Angelman Syndrome Therapeutics
 https://cureangelman.org/

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/angelman-syndrome/

• Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/angelman.html

GeneReviews
• Angelman Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1144

ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22angelman+syndrome%22

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Angelman+Syndrome%5BMAJR%5D%29+AND+%28Angelman+syndrome%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

OMIM
• ANGELMAN SYNDROME
 http://omim.org/entry/105830
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15668046

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20981772

Reprinted from Genetics Home Reference:

Reviewed: May 2015
Published: March 13, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services