Alexander disease

Alexander disease is a rare disorder of the nervous system. It is one of a group of disorders, called leukodystrophies, that involve the destruction of myelin. Myelin is the fatty covering that insulates nerve fibers and promotes the rapid transmission of nerve impulses. If myelin is not properly maintained, the transmission of nerve impulses could be disrupted. As myelin deteriorates in leukodystrophies such as Alexander disease, nervous system functions are impaired.

Most cases of Alexander disease begin before age 2 and are described as the infantile form. Signs and symptoms of the infantile form typically include an enlarged brain and head size (megalecephaly), seizures, stiffness in the arms and/or legs (spasticity), intellectual disability, and developmental delay. Less frequently, onset occurs later in childhood (the juvenile form) or in adulthood. Common problems in juvenile and adult forms of Alexander disease include speech abnormalities, swallowing difficulties, seizures, and poor coordination (ataxia). Rarely, a neonatal form of Alexander disease occurs within the first month of life and is associated with severe intellectual disability and developmental delay, a buildup of fluid in the brain (hydrocephalus), and seizures.

Alexander disease is also characterized by abnormal protein deposits known as Rosenthal fibers. These deposits are found in specialized cells called astroglial cells, which support and nourish other cells in the brain and spinal cord (central nervous system).

Frequency

The prevalence of Alexander disease is unknown. About 500 cases have been reported since the disorder was first described in 1949.

Causes

Mutations in the \(GFAP\) gene cause Alexander disease. The \(GFAP\) gene provides instructions for making a protein called glial fibrillary acidic protein. Several molecules of this protein bind together to form intermediate filaments, which provide support and strength to cells. Mutations in the \(GFAP\) gene lead to the production of a structurally altered glial fibrillary acidic protein. The altered protein is thought to impair the formation of normal intermediate filaments. As a result, the abnormal glial fibrillary acidic protein likely accumulates in astroglial cells, leading to the formation of Rosenthal fibers, which impair cell function. It is not well understood how impaired astroglial cells contribute to the abnormal formation or maintenance of myelin, leading to the signs and symptoms of Alexander disease.
Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Most cases result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. Rarely, an affected person inherits the mutation from one affected parent.

Other Names for This Condition

- Alexander's disease
- ALX
- AxD
- demyelinating leukodystrophy
- dysmyelinating leukodystrophy
- fibrinoid degeneration of astrocytes
- leukodystrophy with Rosenthal fibers

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
  /primer/testing/genetictesting
- Genetic Testing Registry: Alexander Disease

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
  https://clinicaltrials.gov/ct2/results?cond=%22alexander+disease%22

Other Diagnosis and Management Resources

- GeneReview: Alexander Disease
  https://www.ncbi.nlm.nih.gov/books/NBK1172
- MedlinePlus Encyclopedia: Myelin
  https://medlineplus.gov/ency/article/002261.htm
Additional Information & Resources

Health Information from MedlinePlus
- Encyclopedia: Myelin
  https://medlineplus.gov/ency/article/002261.htm
- Health Topic: Degenerative Nerve Diseases
  https://medlineplus.gov/degenerativenervediseases.html
- Health Topic: Leukodystrophies
  https://medlineplus.gov/leukodystrophies.html

Genetic and Rare Diseases Information Center
- Alexander disease
  https://rarediseases.info.nih.gov/diseases/5774/alexander-disease

Additional NIH Resources
- National Institute of Neurological Disorders and Stroke: Alexander Disease
  https://www.ninds.nih.gov/Disorders/All-Disorders/Alexander-disease-Information-Page
- National Institute of Neurological Disorders and Stroke: Leukodystrophy
  https://www.ninds.nih.gov/Disorders/All-Disorders/Leukodystrophy-Information-Page
- National Institutes of Neurological Disorders and Stroke: Megalencephaly
  https://www.ninds.nih.gov/Disorders/All-Disorders/Megalencephaly-Information-Page

Educational Resources
- Kennedy Krieger Institute: Neurodegenerative Disorders
  https://www.kennedykrieger.org/patient-care/conditions/neurodegenerative-disorders
- MalaCards: alexander disease
  https://www.malacards.org/card/alexander_disease
- Orphanet: Alexander disease
  https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=58
- Waisman Center
  https://www.waisman.wisc.edu/stem-cell-research-program/alexander-disease/
Patient Support and Advocacy Resources

- National Organization for Rare Diseases (NORD)
  https://rarediseases.org/rare-diseases/alexander-disease/
- United Leukodystrophy Foundation
  http://ulf.org/alexander-disease/
- University of Kansas Medical Center
  http://www.kumc.edu/gec/support/leukodys.html

Clinical Information from GeneReviews

- Alexander Disease
  https://www.ncbi.nlm.nih.gov/books/NBK1172

Scientific Articles on PubMed

- PubMed
%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last
+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- ALEXANDER DISEASE
  http://omim.org/entry/203450

Sources for This Summary

- Gorospe JR, Maletkovic J. Alexander disease and megalencephalic leukoencephalopathy with
  subcortical cysts: leukodystrophies arising from astrocyte dysfunction. Ment Retard Dev Disabil
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16807904
- Graff-Radford J, Schwartz K, Gavrilova RH, Lachance DH, Kumar N. Neuroimaging and clinical
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24306001
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873623/
- Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell
  RO, Messing A, van der Knaap MS, Brenner M. Glial fibrillary acidic protein mutations in infantile,
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15732097
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17498694
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702672/
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301351

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23364391

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16505300

Reprinted from Genetics Home Reference:

Reviewed: October 2015
Published: November 20, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services