Alexander disease

Alexander disease is a rare disorder of the nervous system. It is one of a group of disorders, called leukodystrophies, that involve the destruction of myelin. Myelin is the fatty covering that insulates nerve fibers and promotes the rapid transmission of nerve impulses. If myelin is not properly maintained, the transmission of nerve impulses could be disrupted. As myelin deteriorates in leukodystrophies such as Alexander disease, nervous system functions are impaired.

Most cases of Alexander disease begin before age 2 and are described as the infantile form. Signs and symptoms of the infantile form typically include an enlarged brain and head size (megalencephaly), seizures, stiffness in the arms and/or legs (spasticity), intellectual disability, and developmental delay. Less frequently, onset occurs later in childhood (the juvenile form) or in adulthood. Common problems in juvenile and adult forms of Alexander disease include speech abnormalities, swallowing difficulties, seizures, and poor coordination (ataxia). Rarely, a neonatal form of Alexander disease occurs within the first month of life and is associated with severe intellectual disability and developmental delay, a buildup of fluid in the brain (hydrocephalus), and seizures.

Alexander disease is also characterized by abnormal protein deposits known as Rosenthal fibers. These deposits are found in specialized cells called astroglial cells, which support and nourish other cells in the brain and spinal cord (central nervous system).

Frequency

The prevalence of Alexander disease is unknown. About 500 cases have been reported since the disorder was first described in 1949.

Genetic Changes

Mutations in the GFAP gene cause Alexander disease. The GFAP gene provides instructions for making a protein called glial fibrillary acidic protein. Several molecules of this protein bind together to form intermediate filaments, which provide support and strength to cells. Mutations in the GFAP gene lead to the production of a structurally altered glial fibrillary acidic protein. The altered protein is thought to impair the formation of normal intermediate filaments. As a result, the abnormal glial fibrillary acidic protein likely accumulates in astroglial cells, leading to the formation of Rosenthal fibers, which impair cell function. It is not well understood how impaired astroglial cells contribute to the abnormal formation or maintenance of myelin, leading to the signs and symptoms of Alexander disease.
Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Most cases result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. Rarely, an affected person inherits the mutation from one affected parent.

Other Names for This Condition

- Alexander's disease
- ALX
- AxD
- demyelinogenic leukodystrophy
- dysmyelinogenic leukodystrophy
- fibrinoid degeneration of astrocytes
- leukodystrophy with Rosenthal fibers

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Alexander's disease

Other Diagnosis and Management Resources

- GeneReview: Alexander Disease
 https://www.ncbi.nlm.nih.gov/books/NBK1172
- MedlinePlus Encyclopedia: Myelin
 https://medlineplus.gov/ency/article/002261.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

• Encyclopedia: Myelin
 https://medlineplus.gov/ency/article/002261.htm
• Health Topic: Degenerative Nerve Diseases
 https://medlineplus.gov/degenerativenervediseases.html
• Health Topic: Leukodystrophies
 https://medlineplus.gov/leukodystrophies.html

Genetic and Rare Diseases Information Center

• Alexander disease
 https://rarediseases.info.nih.gov/diseases/5774/alexander-disease

Additional NIH Resources

• National Institute of Neurological Disorders and Stroke: Alexander Disease
 https://www.ninds.nih.gov/Disorders/All-Disorders/Alexander-disease-Information-Page
• National Institute of Neurological Disorders and Stroke: Leukodystrophy
 https://www.ninds.nih.gov/Disorders/All-Disorders/Leukodystrophy-Information-Page
• National Institutes of Neurological Disorders and Stroke: Megalencephaly
 https://www.ninds.nih.gov/Disorders/All-Disorders/Megalencephaly-Information-Page

Educational Resources

• Disease InfoSearch: Alexander Disease
 http://www.diseaseinfosearch.org/Alexander+Disease/302
• Kennedy Krieger Institute: Neurodegenerative Disorders
 https://www.kennedykrieger.org/patient-care/diagnoses-disorders/neurodegenerative-disorders
• MalaCards: alexander disease
 http://www.malacards.org/card/alexander_disease
• Orphanet: Alexander disease
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=58

• Waisman Center
 https://www.waisman.wisc.edu/stem-cell-research-program/alexander-disease/

Patient Support and Advocacy Resources

• National Organization for Rare Diseases (NORD)
 https://rarediseases.org/rare-diseases/alexander-disease/

• United Leukodystrophy Foundation
 http://ulf.org/alexander-disease/

• University of Kansas Medical Center
 http://www.kumc.edu/gec/support/leukodys.html

GeneReviews

• Alexander Disease
 https://www.ncbi.nlm.nih.gov/books/NBK1172

ClinicalTrials.gov

• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22alexander+disease%22

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Alexander+disease%5BTiab %5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last +1080+days%22%5Bdp%5D

OMIM

• ALEXANDER DISEASE
 http://omim.org/entry/203450

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16807904

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24306001
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873623/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15732097

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17498694
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702672/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301351

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23364391

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16505300

Reviewed: October 2015
Published: July 17, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services