Acute necrotizing encephalopathy type 1

Acute necrotizing encephalopathy type 1, also known as susceptibility to infection-induced acute encephalopathy 3 or II AE3, is a rare type of brain disease (encephalopathy) that occurs following a viral infection such as the flu.

Acute necrotizing encephalopathy type 1 typically appears in infancy or early childhood, although some people do not develop the condition until adolescence or adulthood. People with this condition usually show typical symptoms of an infection, such as fever, cough, congestion, vomiting, and diarrhea, for a few days. Following these flu-like symptoms, affected individuals develop neurological problems, such as seizures, hallucinations, difficulty coordinating movements (ataxia), or abnormal muscle tone. Eventually, most affected individuals go into a coma, which usually lasts for a number of weeks. The condition is described as "acute" because the episodes of illness are time-limited.

People with acute necrotizing encephalopathy type 1 develop areas of damage (lesions) in certain regions of the brain. As the condition progresses, these brain regions develop swelling (edema), bleeding (hemorrhage), and then tissue death (necrosis). The progressive brain damage and tissue loss results in encephalopathy.

Approximately one-third of individuals with acute necrotizing encephalopathy type 1 do not survive their illness and subsequent neurological decline. Of those who do survive, about half have permanent brain damage due to tissue necrosis, resulting in impairments in walking, speech, and other basic functions. Over time, many of these skills may be regained, but the loss of brain tissue is permanent. Other individuals who survive their illness appear to recover completely.

It is estimated that half of individuals with acute necrotizing encephalopathy type 1 are susceptible to recurrent episodes and will have another infection that results in neurological decline; some people may have numerous episodes throughout their lives. Neurological function worsens following each episode as more brain tissue is damaged.

Frequency

Acute necrotizing encephalopathy type 1 is likely a very rare condition, although its incidence is unknown. At least 59 cases of this condition have been reported in the scientific literature.

Causes

Mutations in the RANBP2 gene have been found to increase the risk of developing acute necrotizing encephalopathy type 1. The RANBP2 gene provides instructions for making a protein that interacts with a protein complex known as the nuclear pore.
The nuclear pore is a channel that allows transport of molecules in and out of the cell's nucleus. The RANBP2 protein helps regulate the transport of proteins and other molecules through the nuclear pore and helps modify proteins coming into or out of the nucleus. In addition to its functions at the nuclear pore, the RANBP2 protein also plays multiple roles during cell division and helps transport materials within cells.

RANBP2 gene mutations that are associated with acute necrotizing encephalopathy type 1 result in the production of a protein that cannot function normally either due to altered shape or because it cannot get to the nuclear pore where it is needed. These mutations do not cause health problems on their own; it is unclear how they are involved in the process by which a viral infection triggers neurological problems. Researchers suspect that prolonged inflammation in response to the infection may be involved in the development of acute necrotizing encephalopathy type 1, although the role of the altered RANBP2 protein in this process is unknown. Inflammation is a normal immune system response to injury and foreign invaders (such as viruses). However, excessive inflammation can damage the body's tissues. Additionally, certain inflammatory proteins can be toxic to nerve cells when present in large amounts. It is suspected that the combination of the altered RANBP2 protein and the abnormal immune response play a role in individuals' susceptibility to recurrent episodes of acute necrotizing encephalopathy type 1. In people with acute necrotizing encephalopathy type 1, the virus is not found in nerve cells in the brain or spinal cord (central nervous system), so it is likely that the immune reaction, rather than the infection itself, accounts for the neurological signs and symptoms.

Influenza is the most common virus found in people with acute necrotizing encephalopathy type 1; other viruses that are known to trigger this condition include human herpesvirus 6, coxsackie virus, and enteroviruses. In rare cases, the bacterium *Mycoplasma pneumoniae* is involved. Because the signs and symptoms of acute necrotizing encephalopathy type 1 do not vary significantly among the different infections, it is likely that the type of infection is less important than the occurrence of an infection to trigger the condition.

Some people with signs and symptoms of acute necrotizing encephalopathy type 1 do not have an identified mutation in the *RANBP2* gene. In these cases, the gene involved is unknown.

Inheritance Pattern

Acute necrotizing encephalopathy type 1 is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase the risk of developing the disorder following an infection.

In most cases, an affected person inherits the mutation from a parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family.

Some people who have the altered *RANBP2* gene never develop the condition, a situation known as reduced penetrance. It is estimated that an individual with a
RANBP2 gene mutation has a 40 percent chance of developing acute necrotizing encephalopathy type 1 during his or her lifetime. Additional genetic or environmental factors likely play a role in whether an infection triggers the signs and symptoms of this condition. The health history of the individual, such as nutritional status and number of prior infections, may also influence risk.

Other Names for This Condition

- acute necrotizing encephalitis
- ADANE
- ANE1
- autosomal dominant acute necrotizing encephalopathy
- IIAE3
- postinfectious acute necrotizing hemorrhagic encephalopathy
- susceptibility to acute necrotizing encephalopathy
- susceptibility to infection-induced acute encephalopathy
- susceptibility to infection-induced acute encephalopathy 3

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Encephalopathy, acute, infection-induced

Other Diagnosis and Management Resources

- GeneReview: Susceptibility to Infection-Induced Acute Encephalopathy 3
 https://www.ncbi.nlm.nih.gov/books/NBK258641
- The Dana Foundation: Repairing the Injured Brain
 http://dana.org/Cerebrum/2012/Repairing_the_Injured_Brain__Why_Proper_Rehabilitation_Is_Essential_to_Recovering_Function/
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Focal Neurological Deficits
 https://medlineplus.gov/ency/article/003191.htm
- Health Topic: Brain Diseases
 https://medlineplus.gov/braindiseases.html
- Health Topic: Flu
 https://medlineplus.gov/flu.html

Additional NIH Resources

- National Institute of Allergy and Infectious Diseases: Flu (Influenza)
 https://www.niaid.nih.gov/diseases-conditions/influenza
- National Institute of Neurological Disorders and Stroke: Encephalopathy Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Encephalopathy-Information-Page

Educational Resources

- Cincinnati Children’s Hospital: Flu (Influenza)
 https://www.cincinnatichildrens.org/health/f/flu
- Flu.gov
 https://www.cdc.gov/flu/
- MalaCards: acute necrotizing encephalopathy type 1
 http://www.malacards.org/card/acute_necrotizing_encephalopathy_type_1
- Merck Manual Consumer Version: Stupor and Coma
- Orphanet: Acute necrotizing encephalopathy of childhood
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=263524
- The Ontario Brain Institute (Canada)
 http://www.braininstitute.ca/

Patient Support and Advocacy Resources

- Brain Injury Association of America
 https://www.biausa.org/
- Family Caregiver Alliance
 https://www.caregiver.org/
- The Brain Foundation (Australia)
Clinical Information from GeneReviews

• Susceptibility to Infection-Induced Acute Encephalopathy 3
 https://www.ncbi.nlm.nih.gov/books/NBK258641

Scientific Articles on PubMed

• PubMed
 encephalopathy+type+1%5BALL%5D%29+OR+%28ANE1%5BTIAB%5D
 %29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

• ENCEPHALOPATHY, ACUTE, INFECTION-INDUCED, SUSCEPTIBILITY TO, 3
 http://omim.org/entry/608033

Medical Genetics Database from MedGen

• Acute necrotizing encephalitis

Sources for This Summary

• Bloch C, Suter B, Fischmann A, Gensicke H, Rüegg S, Weisser M. Only a Touch of the Flu? The
 Simultaneous Manifestation of Acute Necrotizing Encephalopathy in Two Consanguineous Patients.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26110162
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473106/

• Neilson DE, Adams MD, Orr CM, Schelling DK, Eiben RM, Kerr DS, Anderson J, Bassuk AG, Bye
 AM, Childs AM, Clarke A, Crow YJ, Di Rocco M, Dohna-Schwake C, Dueckers G, Fasano AE, Gika
 AD, Gionnis D, Gorman MP, Grattan-Smith PJ, Hackenberg A, Kuster A, Lentschig MG, Lopez-
 Laso E, Marco EJ, Mastroyianni S, Perrier J, Schmitt-Mechelke T, Servidei S, Skardoutsou A, Uldall
 triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668029/

• Neilson DE. The interplay of infection and genetics in acute necrotizing encephalopathy. Curr Opin
 Pediatr. 2010 Dec;22(6):751-7. doi: 10.1097/MOP.0b013e328340bfe. Review. Citation on PubMed:

• Sell K, Storch K, Hahn G, Lee-Kirsch MA, Ramantani G, Jackson S, Neilson D, von der Hagen M,
 Hehr U, Smitka M. Variable clinical course in acute necrotizing encephalopathy and identification
 j.braindev.2016.02.007. [Epub ahead of print] Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26923722
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25522933

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25873770
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385702/

Reprinted from Genetics Home Reference:

Reviewed: July 2016
Published: September 4, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services