Achondroplasia

Achondroplasia is a form of short-limbed dwarfism. The word achondroplasia literally means "without cartilage formation." Cartilage is a tough but flexible tissue that makes up much of the skeleton during early development. However, in achondroplasia the problem is not in forming cartilage but in converting it to bone (a process called ossification), particularly in the long bones of the arms and legs. Achondroplasia is similar to another skeletal disorder called hypochondroplasia, but the features of achondroplasia tend to be more severe.

All people with achondroplasia have short stature. The average height of an adult male with achondroplasia is 131 centimeters (4 feet, 4 inches), and the average height for adult females is 124 centimeters (4 feet, 1 inch). Characteristic features of achondroplasia include an average-size trunk, short arms and legs with particularly short upper arms and thighs, limited range of motion at the elbows, and an enlarged head (macrocephaly) with a prominent forehead. Fingers are typically short and the ring finger and middle finger may diverge, giving the hand a three-pronged (trident) appearance. People with achondroplasia are generally of normal intelligence.

Health problems commonly associated with achondroplasia include episodes in which breathing slows or stops for short periods (apnea), obesity, and recurrent ear infections. In childhood, individuals with the condition usually develop a pronounced and permanent sway of the lower back (lordosis) and bowed legs. Some affected people also develop abnormal front-to-back curvature of the spine (kyphosis) and back pain. A potentially serious complication of achondroplasia is spinal stenosis, which is a narrowing of the spinal canal that can pinch (compress) the upper part of the spinal cord. Spinal stenosis is associated with pain, tingling, and weakness in the legs that can cause difficulty with walking. Another uncommon but serious complication of achondroplasia is hydrocephalus, which is a buildup of fluid in the brain in affected children that can lead to increased head size and related brain abnormalities.

Frequency

Achondroplasia is the most common type of short-limbed dwarfism. The condition occurs in 1 in 15,000 to 40,000 newborns.

Genetic Changes

Mutations in the FGFR3 gene cause achondroplasia. The FGFR3 gene provides instructions for making a protein that is involved in the development and maintenance of bone and brain tissue. Two specific mutations in the FGFR3 gene are responsible for almost all cases of achondroplasia. Researchers believe that these mutations cause the
FGFR3 protein to be overly active, which interferes with skeletal development and leads to the disturbances in bone growth seen with this disorder.

Inheritance Pattern

Achondroplasia is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. About 80 percent of people with achondroplasia have average-size parents; these cases result from new mutations in the *FGFR3* gene. In the remaining cases, people with achondroplasia have inherited an altered *FGFR3* gene from one or two affected parents. Individuals who inherit two altered copies of this gene typically have a severe form of achondroplasia that causes extreme shortening of the bones and an underdeveloped rib cage. These individuals are usually stillborn or die shortly after birth from respiratory failure.

Other Names for This Condition

- ACH
- achondroplastic dwarfism
- dwarf, achondroplastic

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Achondroplasia

Other Diagnosis and Management Resources

- GeneReview: Achondroplasia
 https://www.ncbi.nlm.nih.gov/books/NBK1152
- MedlinePlus Encyclopedia: Achondroplasia
 https://medlineplus.gov/ency/article/001577.htm
- MedlinePlus Encyclopedia: Hydrocephalus
 https://medlineplus.gov/ency/article/001571.htm
- MedlinePlus Encyclopedia: Lordosis
 https://medlineplus.gov/ency/article/003278.htm
- MedlinePlus Encyclopedia: Spinal Stenosis
 https://medlineplus.gov/ency/article/000441.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
• Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources
 MedlinePlus
 • Encyclopedia: Achondroplasia
 https://medlineplus.gov/ency/article/001577.htm
 • Encyclopedia: Hydrocephalus
 https://medlineplus.gov/ency/article/001571.htm
 • Encyclopedia: Lordosis
 https://medlineplus.gov/ency/article/003278.htm
 • Encyclopedia: Spinal Stenosis
 https://medlineplus.gov/ency/article/000441.htm
 • Health Topic: Dwarfism
 https://medlineplus.gov/dwarfism.html

 Genetic and Rare Diseases Information Center
 • Achondroplasia
 https://rarediseases.info.nih.gov/diseases/8173/achondroplasia

Educational Resources
 • Boston Children's Hospital
 http://www.childrenshospital.org/conditions-and-treatments/conditions/a/achondroplasia
 • Disease InfoSearch: Achondroplasia
 http://www.diseaseinfosearch.org/Achondroplasia/113
 • Johns Hopkins Medicine
 https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/pediatric_neurosurgery/conditions/achondroplasia.html
 • KidsHealth from the Nemours Foundation
 • MalaCards: achondroplasia
 http://www.malacards.org/card/achondroplasia
• Nemours Children’s Health System
https://www.nemours.org/services/skeletal-dysplasia/achondroplasia.html?tab=about

• Orphanet: Achondroplasia
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=15

• University of Virginia Health System
https://uvahealth.com/services/endocrine-system/endocrine-conditions/achondroplasia

• Your Genome from Wellcome Genome Campus
https://www.yourgenome.org/facts/what-is-achondroplasia

Patient Support and Advocacy Resources

• Human Growth Foundation
http://hgfound.org/

• International Skeletal Dysplasia Registry, UCLA
http://ortho.ucla.edu/isdr

• Little People of America, Inc.
http://www.lpaonline.org

• Little People UK
http://littlepeopleuk.org/

• March of Dimes
https://www.marchofdimes.org/baby/achondroplasia.aspx

• National Organization for Rare Disorders (NORD)
https://rarediseases.org/rare-diseases/achondroplasia/

• Resource list from the University of Kansas Medical Center
http://www.kumc.edu/gec/support/dwarfism.html

• The MAGIC Foundation
https://www.magicfoundation.org/

GeneReviews

• Achondroplasia
https://www.ncbi.nlm.nih.gov/books/NBK1152

ClinicalTrials.gov

• ClinicalTrials.gov
https://clinicaltrials.gov/ct2/results?cond=%22achondroplasia%22
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Achondroplasia%5BMAJR%5D%29+AND+%28achondroplasia%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

OMIM

- ACHONDROPLASIA
 http://omim.org/entry/100800

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17630040

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12424440

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16353253

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20601886

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301331

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16140722

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10696568

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21460402

Reprinted from Genetics Home Reference:

Reviewed: May 2012
Published: July 31, 2018