Aarskog-Scott syndrome

Aarskog-Scott syndrome is a genetic disorder that affects the development of many parts of the body. This condition mainly affects males, although females may have mild features of the syndrome.

People with Aarskog-Scott syndrome often have distinctive facial features, such as widely spaced eyes (hypertelorism), a small nose, a long area between the nose and mouth (philtrum), and a widow's peak hairline. They frequently have mild to moderate short stature during childhood, but their growth usually catches up with that of their peers during puberty. Hand abnormalities are common in this syndrome and include short fingers (brachydactyly), curved pinky fingers (fifth finger clinodactyly), webbing of the skin between some fingers (cutaneous syndactyly), and a single crease across the palm. Other abnormalities in people with Aarskog-Scott syndrome include heart defects and a split in the upper lip (cleft lip) with or without an opening in the roof of the mouth (cleft palate).

Most males with Aarskog-Scott syndrome have a shawl scrotum, in which the scrotum surrounds the penis instead of hanging below. Less often, they have undescended testes (cryptorchidism) or a soft out-pouching around the belly-button (umbilical hernia) or in the lower abdomen (inguinal hernia).

The intellectual development of people with Aarskog-Scott syndrome varies widely. Some may have mild learning and behavior problems, while others have normal intelligence. In rare cases, severe intellectual disability has been reported.

Frequency

Aarskog-Scott syndrome is believed to be a rare disorder; however, its prevalence is unknown because mildly affected people may not be diagnosed.

Causes

Mutations in the **FGD1** gene are the only known genetic cause of Aarskog-Scott syndrome. The **FGD1** gene provides instructions for making a protein that turns on (activates) another protein called Cdc42, which transmits signals that are important for various aspects of development before and after birth.

Mutations in the **FGD1** gene lead to the production of an abnormally functioning protein. These mutations disrupt Cdc42 signaling, leading to the wide variety of abnormalities that occur in people with Aarskog-Scott syndrome.

Only about 20 percent of people with this disorder have identifiable mutations in the **FGD1** gene. The cause of Aarskog-Scott syndrome in other affected individuals is unknown.
Inheritance Pattern

When caused by $FGD1$ gene mutations, Aarskog-Scott syndrome is inherited in an X-linked recessive pattern. The $FGD1$ gene is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause Aarskog-Scott syndrome. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. Females who carry one altered copy of the $FGD1$ gene may show mild signs of the condition, such as hypertelorism, short stature, or a widow's peak hairline. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Evidence suggests that Aarskog-Scott syndrome is inherited in an autosomal dominant or autosomal recessive pattern in some families, although the genetic cause of these cases is unknown. In autosomal dominant inheritance, one copy of the altered gene in each cell is sufficient to cause the disorder. In autosomal recessive inheritance, both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- Aarskog syndrome
- AAS
- facio-digito-genital dysplasia
- faciodigitogenital syndrome
- faciogenital dysplasia
- FGDY

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting

Other Diagnosis and Management Resources

Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Aarskog syndrome
 https://medlineplus.gov/ency/article/001654.htm

• Health Topic: Cleft Lip and Palate
 https://medlineplus.gov/cleftlipandpalate.html

• Health Topic: Congenital Heart Defects
 https://medlineplus.gov/congenitalheartdefects.html

• Health Topic: Craniofacial Abnormalities
 https://medlineplus.gov/craniofacialabnormalities.html

• Health Topic: Learning Disabilities
 https://medlineplus.gov/learningdisabilities.html

Genetic and Rare Diseases Information Center

• Aarskog syndrome
 https://rarediseases.info.nih.gov/diseases/4775/aarskog-syndrome

Educational Resources

• MalaCards: aarskog-scott syndrome
 https://www.malacards.org/card/aarskog_scott_syndrome

• Orphanet: Aarskog-Scott syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=915

Patient Support and Advocacy Resources

• Children's Craniofacial Association
 https://ccakids.org/

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/aarskog-syndrome/

• Resource List from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/aarskog.html

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28aarskog-scott+syndrome%29+OR+%28faciogenital+dysplasia%29+AND+human%29+AND+%22last+3600+days%22+AND+OR+&%28syndrome%5BTIAB%5D%29+OR+%28faciogenital+dysplasia%5BTIAB%5D%29+AND+english%5Blanguage%5D+AND+OR+&%28syndrome%5BTIAB%5D%29+AND+human%5Bmesh%5D+AND+OR+&%28syndrome%5BTIAB%5D%29+AND+human%5Bmesh%5D+AND
Sources for This Summary

• OMIM: AARSKOG-SCOTT SYNDROME
 http://omim.org/entry/305400

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21911474
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209245/

• Estrada L, Caron E, Gorski JL. Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet. 2001 Mar 1;10(5):485-95.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11181572

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21356349
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070587/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12913069

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15809997

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14560308
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20082460

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21212517

Reprinted from Genetics Home Reference:

Reviewed: October 2017
Published: November 7, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services