48,XXYY syndrome

48,XXYY syndrome is a chromosomal condition that causes infertility, developmental and behavioral disorders, and other health problems in males.

48,XXYY disrupts male sexual development. Adolescent and adult males with this condition typically have small testes that do not produce enough testosterone, which is the hormone that directs male sexual development. A shortage of testosterone during puberty can lead to reduced facial and body hair, poor muscle development, low energy levels, and an increased risk for breast enlargement (gynecomastia). Because their testes do not function normally, males with 48, XXYY syndrome have an inability to father children (infertility).

48,XXYY syndrome can affect other parts of the body as well. Males with 48,XXYY syndrome are often taller than other males their age with an average adult height of 6 feet 4 inches (193 cm). They tend to develop a tremor that typically starts in adolescence and increases with age. Dental problems are frequently seen with this condition; they include delayed appearance of the primary (baby) or secondary (adult) teeth, thin tooth enamel, crowded and/or misaligned teeth, and multiple cavities. As affected males get older, they may develop a narrowing of the blood vessels in the legs, called peripheral vascular disease. Peripheral vascular disease can cause skin ulcers to form. Affected males are also at risk for developing a type of clot called a deep vein thrombosis (DVT) that occurs in the deep veins of the legs. Additionally, males with 48,XXYY syndrome may have flat feet (pes planus), elbow abnormalities, abnormal fusion of certain bones in the forearm (radioulnar synostosis), allergies, asthma, type 2 diabetes, seizures, and congenital heart defects.

Most males with 48,XXYY syndrome have an IQ that ranges from 70-80 with some degree of difficulty with speech and language development. Learning disabilities, especially those that are language-based, are very common in males with this disorder. Affected males seem to perform better at tasks focused on math, visual-spatial skills such as puzzles, and memorization of locations or directions. Some boys with 48,XXYY syndrome have delayed development of motor skills such as sitting, standing, and walking that can lead to poor coordination. Affected males have higher than average rates of behavioral disorders, such as attention deficit hyperactivity disorder (ADHD); mood disorders, including anxiety and bipolar disorder; and autism spectrum disorder, which affects communication and social interaction.

Frequency

48,XXYY syndrome is estimated to affect 1 in 18,000 to 40,000 males.
Genetic Changes

48,XXYY syndrome is a condition related to the X and Y chromosomes (the sex chromosomes). People normally have 46 chromosomes in each cell. Two of the 46 chromosomes, known as X and Y, are called sex chromosomes because they help determine whether a person will develop male or female sex characteristics. Females typically have two X chromosomes (46,XX), and males have one X chromosome and one Y chromosome (46,XY). 48,XXYY syndrome results from the presence of an extra copy of both sex chromosomes in each of a male’s cells (48,XXYY). Extra copies of genes on the X chromosome interfere with male sexual development, preventing the testes from functioning normally and reducing the levels of testosterone. Many genes are found only on the X or Y chromosome, but genes in areas known as the pseudoautosomal regions are present on both sex chromosomes. Extra copies of genes from the pseudoautosomal regions of the extra X and Y chromosome contribute to the signs and symptoms of 48,XXYY syndrome; however, the specific genes have not been identified.

Inheritance Pattern

This condition is not inherited; it usually occurs as a random event during the formation of reproductive cells (eggs and sperm). An error in cell division called nondisjunction results in a reproductive cell with an abnormal number of chromosomes. In 48,XXYY syndrome, the extra sex chromosomes almost always come from a sperm cell. Nondisjunction may cause a sperm cell to gain two extra sex chromosomes, resulting in a sperm cell with three sex chromosomes (one X and two Y chromosomes). If that sperm cell fertilizes a normal egg cell with one X chromosome, the resulting child will have two X chromosomes and two Y chromosomes in each of the body’s cells.

In a small percentage of cases, 48,XXYY syndrome results from nondisjunction of the sex chromosomes in a 46,XY embryo very soon after fertilization has occurred. This means that a normal sperm cell with one Y chromosome fertilized a normal egg cell with one X chromosome, but right after fertilization nondisjunction of the sex chromosomes caused the embryo to gain two extra sex chromosomes, resulting in a 48,XXYY embryo.

Other Names for This Condition

- XXYY syndrome

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: XXYY syndrome
General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Health Topic: Attention Deficit Hyperactivity Disorder
 https://medlineplus.gov/attentiondeficithyperactivitydisorder.html
- Health Topic: Male Infertility
 https://medlineplus.gov/maleinfertility.html
- Health Topic: Tooth Disorders
 https://medlineplus.gov/toothdisorders.html
- Health Topic: Tremor
 https://medlineplus.gov/tremor.html

Genetic and Rare Diseases Information Center

- 48,XXYY syndrome

Additional NIH Resources

- National Institute of Diabetes and Digestive and Kidney Diseases: Diabetes
 https://www.niddk.nih.gov/about-niddk/research-areas/diabetes

Educational Resources

- American Heart Association: What Is Peripheral Vascular Disease?
 http://www.heart.org/idc/groups/heart-public/@wcm/@hcm/documents/downloadable/ucm_300323.pdf
- Boston Children's Hospital: Congenital Heart Defects
 http://www.childrenshospital.org/conditions-and-treatments/conditions/c/congenital-heart-defects
- MalaCards: 48,xxyy syndrome
 http://www.malacards.org/card/48xxyy_syndrome
- March of Dimes: Chromosomal Conditions
 https://www.marchofdimes.org/baby/chromosomal-conditions.aspx
- Orphanet: 48,XXYY syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=10
- TeensHealth: Delayed Puberty

Patient Support and Advocacy Resources
- Association for X and Y Chromosome Variations
 https://genetic.org/
- Autism Speaks
 https://www.autismspeaks.org/
- CHADD: The National Resource on ADHD
 http://www.chadd.org/
- Learning Disabilities Association of America
 https://ldaamerica.org/about-us/
- National Center for Learning Disabilities
 https://www.nclld.org/
- RESOLVE: The National Infertility Association
 https://resolve.org/
- The Focus Foundation
 http://thefocusfoundation.org/
- The XXYY Project
 https://genetic.org/variations/about-xxyy/

ClinicalTrials.gov
- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%2248%2CXXYY+syndrome%22+OR+%22XXYY%22

Scientific Articles on PubMed
- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%2848,+XXYY%5BTIAB%5D%29+OR+%28XXYY%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22+AND+%225Bdp%5D
MedGen
• XXYY syndrome

Sources for This Summary
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21342258
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314712/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19705466
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056502/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18481271
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056496/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17062147
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1634840/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17497714

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14659786

Reprinted from Genetics Home Reference:

Reviewed: October 2017
Published: July 31, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services