46,XX testicular disorder of sex development

46,XX testicular disorder of sex development is a condition in which individuals with two X chromosomes in each cell, the pattern normally found in females, have a male appearance. People with this disorder have male external genitalia. They generally have small testes and may also have abnormalities such as undescended testes (cryptorchidism) or the urethra opening on the underside of the penis (hypospadias). A small number of affected people have external genitalia that do not look clearly male or clearly female (ambiguous genitalia). Affected children are typically raised as males and have a male gender identity.

At puberty, most affected individuals require treatment with the male sex hormone testosterone to induce development of male secondary sex characteristics such as facial hair and deepening of the voice (masculinization). Hormone treatment can also help prevent breast enlargement (gynecomastia). Adults with this disorder are usually shorter than average for males and are unable to have children (infertile).

Frequency
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.

Causes
People normally have 46 chromosomes in each cell. Two of the 46 chromosomes, known as X and Y, are called sex chromosomes because they help determine whether a person will develop male or female sex characteristics. Females typically have two X chromosomes (46,XX), and males usually have one X chromosome and one Y chromosome (46,XY).

The SRY gene, normally located on the Y chromosome, provides instructions for making the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male.

In about 80 percent of individuals with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The translocation causes the SRY gene to be misplaced, almost always onto an X chromosome. If a fetus is conceived from a sperm cell with an X chromosome bearing the SRY gene, it will develop as a male despite not having a Y chromosome. This form of the condition is called SRY-positive 46,XX testicular disorder of sex development.
About 20 percent of people with 46,XX testicular disorder of sex development do not have the SRY gene. This form of the condition is called SRY-negative 46,XX testicular disorder of sex development. The cause of the disorder in these individuals is often unknown, although changes affecting other genes have been identified. Individuals with SRY-negative 46,XX testicular disorder of sex development are more likely to have ambiguous genitalia than are people with the SRY-positive form.

Inheritance Pattern

SRY-positive 46,XX testicular disorder of sex development is almost never inherited. This condition results from the translocation of a Y chromosome segment containing the SRY gene during the formation of sperm (spermatogenesis). Affected people typically have no history of the disorder in their family and cannot pass on the disorder because they are infertile.

In rare cases, the SRY gene may be misplaced onto a chromosome other than the X chromosome. This translocation may be carried by an unaffected father and passed on to a child with two X chromosomes, resulting in 46,XX testicular disorder of sex development. In another very rare situation, a man may carry the SRY gene on both the X and Y chromosome; a child who inherits his X chromosome will develop male sex characteristics despite having no Y chromosome.

The inheritance pattern of SRY-negative 46,XX testicular disorder of sex development is unknown. A few families with unaffected parents have had more than one child with the condition, suggesting the possibility of autosomal recessive inheritance. Autosomal recessive means both copies of a gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- 46,XX sex reversal
- XX male syndrome
- XX sex reversal

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting
Other Diagnosis and Management Resources

- GeneReview: Nonsyndromic 46,XX Testicular Disorders of Sex Development
 https://www.ncbi.nlm.nih.gov/books/NBK1416
- MedlinePlus Encyclopedia: Ambiguous Genitalia
 https://medlineplus.gov/ency/article/003269.htm
- MedlinePlus Encyclopedia: Intersex
 https://medlineplus.gov/ency/article/001669.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Ambiguous Genitalia
 https://medlineplus.gov/ency/article/003269.htm
- Encyclopedia: Intersex
 https://medlineplus.gov/ency/article/001669.htm
- Health Topic: Endocrine Diseases
 https://medlineplus.gov/endocrinodiseases.html
- Health Topic: Infertility
 https://medlineplus.gov/infertility.html

Genetic and Rare Diseases Information Center

- 46,XX testicular disorder of sex development

Educational Resources

- Accord Alliance
 http://www.accordalliance.org/dsd-guidelines/
- MalaCards: nonsyndromic 46,xx testicular disorders of sex development
 https://www.malacards.org/card/nonsyndromic_46xx_testicular_disorders_of_sex_development
- Orphanet: 46,XX testicular disorder of sex development
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=393

Patient Support and Advocacy Resources

- Resolve: The National Infertility Association
 https://resolve.org/

Clinical Information from GeneReviews

- Nonsyndromic 46,XX Testicular Disorders of Sex Development
 https://www.ncbi.nlm.nih.gov/books/NBK1416
Scientific Articles on PubMed

- PubMed
 %5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last
 +3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- 46,XX SEX REVERSAL 1
 http://omim.org/entry/400045

Medical Genetics Database from MedGen

- 46,XX testicular disorder of sex development

Sources for This Summary

 Fellous M. Familial case of 46,XX male and 46,XX true hermaphrodite associated with a paternal-
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8402263

 Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J Pediatr
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16200839

 Bettendorf M. Three new 46,XX male patients: a clinical, cytogenetic and molecular analysis. J
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15751609

- Kolon TF, Ferrer FA, McKenna PH. Clinical and molecular analysis of XX sex reversed patients. J
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9719302

- Kremen J, Chan YM, Swartz JM. Recent findings on the genetics of disorders of sex development.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27798415

 E. Atypical XX male with the SRY gene located at the long arm of chromosome 1 and a 1qter
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18412126

- Rajender S, Rajani V, Gupta NJ, Chakravarty B, Singh L, Thangaraj K. SRY-negative 46,XX male
 with normal genitals, complete masculinization and infertility. Mol Hum Reprod. 2006 May;12(5):
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16556678

Reprinted from Genetics Home Reference:

Reviewed: November 2008
Published: August 6, 2019