22q11.2 deletion syndrome

22q11.2 deletion syndrome (which is also known by several other names, listed below) is a disorder caused by the deletion of a small piece of chromosome 22. The deletion occurs near the middle of the chromosome at a location designated q11.2.

22q11.2 deletion syndrome has many possible signs and symptoms that can affect almost any part of the body. The features of this syndrome vary widely, even among affected members of the same family. Common signs and symptoms include heart abnormalities that are often present from birth, an opening in the roof of the mouth (a cleft palate), and distinctive facial features. People with 22q11.2 deletion syndrome often experience recurrent infections caused by problems with the immune system, and some develop autoimmune disorders such as rheumatoid arthritis and Graves disease in which the immune system attacks the body's own tissues and organs. Affected individuals may also have breathing problems, kidney abnormalities, low levels of calcium in the blood (which can result in seizures), a decrease in blood platelets (thrombocytopenia), significant feeding difficulties, gastrointestinal problems, and hearing loss. Skeletal differences are possible, including mild short stature and, less frequently, abnormalities of the spinal bones.

Many children with 22q11.2 deletion syndrome have developmental delays, including delayed growth and speech development, and learning disabilities. Later in life, they are at an increased risk of developing mental illnesses such as schizophrenia, depression, anxiety, and bipolar disorder. Additionally, affected children are more likely than children without 22q11.2 deletion syndrome to have attention-deficit/hyperactivity disorder (ADHD) and developmental conditions such as autism spectrum disorder that affect communication and social interaction.

Because the signs and symptoms of 22q11.2 deletion syndrome are so varied, different groupings of features were once described as separate conditions. Doctors named these conditions DiGeorge syndrome, velocardiofacial syndrome (also called Shprintzen syndrome), and conotruncal anomaly face syndrome. In addition, some children with the 22q11.2 deletion were diagnosed with the autosomal dominant form of Opitz G/BBB syndrome and Cayler cardiofacial syndrome. Once the genetic basis for these disorders was identified, doctors determined that they were all part of a single syndrome with many possible signs and symptoms. To avoid confusion, this condition is usually called 22q11.2 deletion syndrome, a description based on its underlying genetic cause.

Frequency

22q11.2 deletion syndrome affects an estimated 1 in 4,000 people. However, the condition may actually be more common than this estimate because doctors and
researchers suspect it is underdiagnosed due to its variable features. The condition may not be identified in people with mild signs and symptoms, or it may be mistaken for other disorders with overlapping features.

Causes

Most people with 22q11.2 deletion syndrome are missing a sequence of about 3 million DNA building blocks (base pairs) on one copy of chromosome 22 in each cell. This region contains 30 to 40 genes, many of which have not been well characterized. A small percentage of affected individuals have shorter deletions in the same region. This condition is described as a contiguous gene deletion syndrome because it results from the loss of many genes that are close together.

Researchers are working to identify all of the genes that contribute to the features of 22q11.2 deletion syndrome. They have determined that the loss of a particular gene on chromosome 22, TBX1, is probably responsible for many of the syndrome's characteristic signs (such as heart defects, a cleft palate, distinctive facial features, hearing loss, and low calcium levels). Some studies suggest that a deletion of this gene may contribute to behavioral problems as well. The loss of another gene, COMT, in the same region of chromosome 22 may also help explain the increased risk of behavioral problems and mental illness. The loss of additional genes in the deleted region likely contributes to the varied features of 22q11.2 deletion syndrome.

Inheritance Pattern

The inheritance of 22q11.2 deletion syndrome is considered autosomal dominant because a deletion in one copy of chromosome 22 in each cell is sufficient to cause the condition. Most cases of 22q11.2 deletion syndrome are not inherited, however. The deletion occurs most often as a random event during the formation of reproductive cells (eggs or sperm) or in early fetal development. Affected people typically have no history of the disorder in their family, though they can pass the condition to their children. In about 10 percent of cases, a person with this condition inherits the deletion in chromosome 22 from a parent. In inherited cases, other family members may be affected as well.

Other Names for This Condition

- 22q11.2DS
- autosomal dominant Opitz G/BBB syndrome
- CATCH22
- Cayler cardiofacial syndrome
- conotruncal anomaly face syndrome (CTAF)
- deletion 22q11.2 syndrome
- DiGeorge syndrome
• Sedlackova syndrome
• Shprintzen syndrome
• VCFS
• velo-cardio-facial syndrome
• velocardiofacial syndrome

Diagnosis & Management

Genetic Testing Information
• What is genetic testing?
 https://primer/testing/genetictesting
• Genetic Testing Registry: Asymmetric crying face association
• Genetic Testing Registry: DiGeorge sequence
• Genetic Testing Registry: Opitz G/BBB syndrome
• Genetic Testing Registry: Shprintzen syndrome

Research Studies from ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22q11.2+deletion+syndrome%22

Other Diagnosis and Management Resources
• GeneReview: 22q11.2 Deletion Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1523

Additional Information & Resources

Health Information from MedlinePlus
• Health Topic: Cleft Lip and Palate
 https://medlineplus.gov/cleftlipandpalate.html
• Health Topic: Congenital Heart Defects
 https://medlineplus.gov/congenitalheartdefects.html
• Health Topic: Immune System and Disorders
 https://medlineplus.gov/immunesystemanddisorders.html
Additional NIH Resources

- National Human Genome Research Institute
 https://www.genome.gov/Genetic-Disorders/Velocardiofacial-Syndrome

Educational Resources

- American Heart Association

- Children's Hospital of Philadelphia
 https://www.chop.edu/conditions-diseases/22q112-deletion-and-duplication-syndromes?id=74634

- Cincinnati Children’s Hospital Medical Center
 https://www.cincinnatichildrens.org/health/v/vcfs

- Emory University School of Medicine
 http://genetics.emory.edu/documents/resources/Emory_Human_Genetics_Congenital_Heart_Defects_22q.PDF

- MalaCards: chromosome 22q11.2 deletion syndrome, distal
 https://www.malacards.org/card/chromosome_22q112_deletion_syndrome_distal

- Orphanet: 22q11.2 deletion syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=567

- Seattle Children's Hospital
 https://www.seattlechildrens.org/conditions/chromosomal-genetic-conditions/22q112-related-disorders

- UC Davis Children’s Hospital

- UC Davis MIND Institute: Chromosome 22q11.2 DS Educational Videos

Patient Support and Advocacy Resources

- Chromosome Disorder Outreach
 https://chromodisorder.org/

- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/chromosome-22q11-2-deletion-syndrome/
Clinical Information from GeneReviews

- 22q11.2 Deletion Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1523

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%2822q11.2+deletion+syndrome+%5BMAJR%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22+AND+%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- DIGEORGE SYNDROME
 http://omim.org/entry/188400

- OPITZ GBBB SYNDROME, TYPE II
 http://omim.org/entry/145410

- VELOCARDIOFACIAL SYNDROME
 http://omim.org/entry/192430

Medical Genetics Database from MedGen

- Shprintzen-Goldberg syndrome

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15823980

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21570089
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197829/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16134031
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814423/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301696
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16001439

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21200182

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16684884
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472513/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16027702

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18636631
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805186/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15640691

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16926618

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14586538

Reprinted from Genetics Home Reference:

Reviewed: July 2013
Published: September 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services