Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

PTEN

Reviewed May 2015

What is the official name of the PTEN gene?

The official name of this gene is “phosphatase and tensin homolog.”

PTEN is the gene's official symbol. The PTEN gene is also known by other names, listed below.

What is the normal function of the PTEN gene?

The PTEN gene provides instructions for making a protein that is found in almost all tissues in the body. The protein acts as a tumor suppressor, which means that it helps regulate the cycle of cell division by keeping cells from growing and dividing too rapidly or in an uncontrolled way. The PTEN protein is an enzyme that modifies other proteins and fats (lipids) by removing phosphate groups, which consist of three oxygen atoms and one phosphorus atom. This type of enzyme is called a phosphatase.

The PTEN protein acts as part of a chemical pathway that signals cells to stop dividing and triggers cells to self-destruct through a process called apoptosis. Evidence suggests that the PTEN protein also helps control cell movement (migration), the sticking (adhesion) of cells to surrounding tissues, and the formation of new blood vessels (angiogenesis). Additionally, the protein likely plays a role in maintaining the stability of a cell's genetic information. All of these functions help prevent uncontrolled cell growth that can lead to the formation of tumors.

Does the PTEN gene share characteristics with other genes?

The PTEN gene belongs to a family of genes called PTP (protein tyrosine phosphatases).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genefamilies) in the Handbook.

How are changes in the PTEN gene related to health conditions?

Bannayan-Riley-Ruvalcaba syndrome - caused by mutations in the PTEN gene

More than 30 mutations in the PTEN gene have been found to cause Bannayan-Riley-Ruvalcaba syndrome. Common features of this condition include a large head size (macrocephaly), multiple noncancerous tumors and tumor-like growths called hamartomas, and dark freckles on the penis in males. Bannayan-Riley-Ruvalcaba syndrome is one of several related conditions that are often considered together as PTEN hamartoma tumor syndrome (described below).

Some of the mutations that cause Bannayan-Riley-Ruvalcaba syndrome change single DNA building blocks (base pairs) in the PTEN gene or insert or delete a small number of base pairs. Other mutations result in an abnormally short protein or reducing the amount of protein that is produced. In about 10 percent of cases, Bannayan-Riley-Ruvalcaba syndrome results from the deletion of a large amount of genetic material that includes part or all of the PTEN gene. All of these genetic changes prevent the PTEN protein from regulating cell proliferation effectively, which can lead to uncontrolled cell growth and the formation of hamartomas and other types of tumors. It is unclear how PTEN gene mutations cause macrocephaly and the other features of Bannayan-Riley-Ruvalcaba syndrome.

Cowden syndrome - caused by mutations in the PTEN gene

Researchers have identified more than 300 mutations in the PTEN gene that can cause Cowden syndrome or a similar disorder called Cowden-like syndrome. These conditions are characterized by the growth of multiple hamartomas and an increased risk of developing certain cancers, particularly breast cancer, thyroid cancer, and cancer of the uterine lining (endometrial cancer). Cowden syndrome and Cowden-like syndrome are considered to be part of PTEN hamartoma tumor syndrome (described below).

Mutations that cause Cowden syndrome and Cowden-like syndrome include changes in a small number of base pairs and, in some cases, deletions of a larger amount of genetic material from the PTEN gene. These mutations lead to the production of a PTEN protein that does not function properly or does not work at all. The defective protein is unable to restrain cell division or signal abnormal cells to die, which contributes to the development of hamartomas and cancerous tumors.

breast cancer - increased risk from variations of the PTEN gene

Inherited mutations in the PTEN gene increase the risk of developing breast cancer. In many cases, this increased risk occurs as part of Cowden syndrome (described above). Inherited mutations in the PTEN gene are thought to account for only a small fraction of all breast cancer cases.

Noninherited (somatic) PTEN gene mutations occur in some breast cancers in women without a family history of the disease. Somatic mutations are not inherited and do not occur as part of a familial cancer syndrome. They are acquired during a person's lifetime and occur only in certain cells in the breast. These mutations impair the tumor suppressor function of the PTEN enzyme, allowing cells to grow and divide without control or order. This uncontrolled cell growth contributes to the formation of a cancerous tumor. Studies suggest that a loss of functional PTEN enzyme is also related to poor responsiveness to a drug called trastuzumab (Herceptin), which is used to treat breast cancer.

other disorders - caused by mutations in the PTEN gene

Several related conditions caused by mutations in the PTEN gene, including Bannayan-Riley-Ruvalcaba syndrome and Cowden syndrome, are often considered together as PTEN hamartoma tumor syndrome. The mutations that cause these conditions are present in cells throughout the body and are often inherited from a parent. Some of the mutations that cause PTEN hamartoma tumor syndrome lead to a defective version of the PTEN protein that cannot perform its function as a tumor suppressor. Other mutations prevent the PTEN gene from producing any protein at all. Without functional PTEN protein, cell division is not controlled effectively and damaged cells continue to divide inappropriately, leading to the development of hamartomas and other tumors.

In some published case reports, mutations in the PTEN gene have been associated with Proteus syndrome, a rare condition characterized by asymmetric overgrowth of the bones, skin, and other tissues. However, many researchers now believe that individuals with PTEN gene mutations and asymmetric overgrowth do not meet the strict guidelines for a diagnosis of Proteus syndrome. Instead, these individuals have a condition that is considered part of PTEN hamartoma tumor syndrome. One name that has been proposed for the condition is segmental overgrowth, lipomatosis, arteriovenous malformations, and epidermal nevus (SOLAMEN) syndrome; another is type 2 segmental Cowden syndrome. However, some scientific articles still refer to PTEN-related Proteus syndrome.

PTEN gene mutations have been identified in several people who have both an unusually large head size (macrocephaly) and the characteristic features of autism, a developmental disorder that affects communication and social interaction. Many of these mutations change single protein building blocks (amino acids) in the PTEN protein or lead to the production of an abnormally short version of the protein. It is unknown how changes in the PTEN gene are related to the risk of developing autism. Some of these mutations have also been reported in families with PTEN hamartoma tumor syndrome, and it is unclear how these mutations can cause different disorders.

other cancers - associated with the PTEN gene

Somatic (noninherited) mutations in the PTEN gene are among the most common genetic changes found in human cancers. Unlike the mutations that cause PTEN hamartoma tumor syndrome, these mutations are acquired during a person's lifetime and are present only in tumor cells.

PTEN gene mutations have been reported in many types of cancer, and studies suggest that PTEN may be the most frequently mutated gene in prostate cancer and endometrial cancer. PTEN gene mutations are also commonly found in brain tumors called glioblastomas and astrocytomas, and in an aggressive form of skin cancer called melanoma. Mutations in the PTEN gene result in an altered protein that has lost its tumor suppressor function. The loss of this protein's function likely permits certain cells to divide uncontrollably, contributing to the growth of cancerous tumors. In some cases, the presence of PTEN gene mutations is associated with more advanced stages of tumor growth.

Where is the PTEN gene located?

Cytogenetic Location: 10q23.3

Molecular Location on chromosome 10: base pairs 87,863,437 to 87,971,929

The PTEN gene is located on the long (q) arm of chromosome 10 at position 23.3.

The PTEN gene is located on the long (q) arm of chromosome 10 at position 23.3.

More precisely, the PTEN gene is located from base pair 87,863,437 to base pair 87,971,929 on chromosome 10.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about PTEN?

You and your healthcare professional may find the following resources about PTEN helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the PTEN gene or gene products?

  • MMAC1
  • mutated in multiple advanced cancers 1
  • phosphatase and tensin homolog deleted on chromosome 10
  • phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
  • Protein-tyrosine phosphatase PTEN
  • PTEN1
  • PTEN_HUMAN
  • PTEN-MMAC1 protein
  • TEP1
  • TEP1 phosphatase

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding PTEN?

acids ; angiogenesis ; apoptosis ; arteriovenous ; atom ; autism ; cancer ; carcinoma ; cell ; cell division ; cell proliferation ; chromosome ; deletion ; diagnosis ; DNA ; endometrial ; enzyme ; familial ; family history ; gene ; hamartoma ; inherited ; kinase ; macrocephaly ; melanoma ; oxygen ; phosphatase ; phosphate ; phosphorus ; proliferation ; prostate ; protein ; syndrome ; thyroid ; tumor ; tyrosine

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

References

  • Baker SJ. PTEN enters the nuclear age. Cell. 2007 Jan 12;128(1):25-8. Review. (http://www.ncbi.nlm.nih.gov/pubmed/17218252?dopt=Abstract)
  • Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008 Nov;16(11):1289-300. doi: 10.1038/ejhg.2008.162. Epub 2008 Sep 10. Review. (http://www.ncbi.nlm.nih.gov/pubmed/18781191?dopt=Abstract)
  • Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, Edery P, Bottani A, Layet V, Caron O, Gilbert-Dussardier B, Delnatte C, Dugast C, Fricker JP, Bonneau D, Sevenet N, Longy M, Caux F; French Cowden Disease Network. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013 Apr;50(4):255-63. doi: 10.1136/jmedgenet-2012-101339. Epub 2013 Jan 18. (http://www.ncbi.nlm.nih.gov/pubmed/23335809?dopt=Abstract)
  • Gene Review: PTEN Hamartoma Tumor Syndrome (PHTS) (http://www.ncbi.nlm.nih.gov/books/NBK1488)
  • He X, Ni Y, Wang Y, Romigh T, Eng C. Naturally occurring germline and tumor-associated mutations within the ATP-binding motifs of PTEN lead to oxidative damage of DNA associated with decreased nuclear p53. Hum Mol Genet. 2011 Jan 1;20(1):80-9. doi: 10.1093/hmg/ddq434. Epub 2010 Oct 6. (http://www.ncbi.nlm.nih.gov/pubmed/20926450?dopt=Abstract)
  • Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011 Apr;11(4):289-301. doi: 10.1038/nrc3037. Review. Erratum in: Nat Rev Cancer. 2011 Jun;11(6):458. (http://www.ncbi.nlm.nih.gov/pubmed/21430697?dopt=Abstract)
  • Kechagioglou P, Papi RM, Provatopoulou X, Kalogera E, Papadimitriou E, Grigoropoulos P, Nonni A, Zografos G, Kyriakidis DA, Gounaris A. Tumor suppressor PTEN in breast cancer: heterozygosity, mutations and protein expression. Anticancer Res. 2014 Mar;34(3):1387-400. (http://www.ncbi.nlm.nih.gov/pubmed/24596386?dopt=Abstract)
  • National Cancer Institute: Genetics of Breast and Gynecologic Cancers (PDQ) (http://www.cancer.gov/types/breast/hp/breast-ovarian-genetics-pdq)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/5728)
  • Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013 Nov 6;105(21):1607-16. doi: 10.1093/jnci/djt277. Epub 2013 Oct 17. Review. (http://www.ncbi.nlm.nih.gov/pubmed/24136893?dopt=Abstract)
  • Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012 Apr 4;13(5):283-96. doi: 10.1038/nrm3330. Review. (http://www.ncbi.nlm.nih.gov/pubmed/22473468?dopt=Abstract)
  • Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012 Jan 15;18(2):400-7. doi: 10.1158/1078-0432.CCR-11-2283. (http://www.ncbi.nlm.nih.gov/pubmed/22252256?dopt=Abstract)
  • Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008 Sep 18;27(41):5443-53. doi: 10.1038/onc.2008.241. Review. (http://www.ncbi.nlm.nih.gov/pubmed/18794879?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: May 2015
Published: July 27, 2015