Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions     A service of the U.S. National Library of Medicine®


Reviewed July 2012

What is the official name of the NOD2 gene?

The official name of this gene is “nucleotide binding oligomerization domain containing 2.”

NOD2 is the gene's official symbol. The NOD2 gene is also known by other names, listed below.

What is the normal function of the NOD2 gene?

The NOD2 gene provides instructions for making a protein that plays an important role in immune system function. The NOD2 protein is active in some types of immune system cells (including monocytes, macrophages, and dendritic cells), which help protect the body against foreign invaders such as viruses and bacteria. The protein is also active in several types of epithelial cells, including Paneth cells, which are found in the lining of the intestine. These cells help defend the intestinal wall against bacterial infection.

The NOD2 protein has several critical functions in defending the body against foreign invaders. The protein is involved in recognizing certain bacteria and stimulating the immune system to respond properly. When triggered by specific substances produced by bacteria, the NOD2 protein turns on (activates) a protein complex called nuclear factor-kappa-B. This protein complex regulates the activity of multiple genes, including genes that control immune responses and inflammatory reactions. An inflammatory reaction occurs when the immune system sends signaling molecules and white blood cells to a site of injury or disease to fight microbial invaders and facilitate tissue repair.

The NOD2 protein also appears to play a role in a process called autophagy, which cells use to surround and destroy bacteria and viruses. In addition to protecting cells from infection, autophagy is used to recycle worn-out cell parts and break down certain proteins when they are no longer needed. This process is also involved in the self-destruction of cells (apoptosis).

Does the NOD2 gene share characteristics with other genes?

The NOD2 gene belongs to a family of genes called NLR (nucleotide-binding domain and leucine rich repeat containing family).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? ( in the Handbook.

How are changes in the NOD2 gene related to health conditions?

Blau syndrome - caused by mutations in the NOD2 gene

At least 17 mutations in the NOD2 gene have been found to cause Blau syndrome, an inflammatory disorder that primarily affects the skin, joints, and eyes. These mutations change single protein building blocks (amino acids) in the NOD2 protein. All of these mutations result in a version of the NOD2 protein that is overactive, which can trigger an abnormal inflammatory reaction and cause swelling and irritation. However, it is unclear how the abnormally active protein causes the specific pattern of inflammation affecting the skin, joints, and eyes that is characteristic of Blau syndrome.

NOD2 gene mutations can also cause early-onset sarcoidosis, a similar condition that some researchers consider to be a non-inherited version of Blau syndrome.

Crohn disease - increased risk from variations of the NOD2 gene

Approximately 40 variations in the NOD2 gene have been associated with an increased risk of Crohn disease, a complex disorder of the digestive system. In particular, NOD2 gene changes are associated with a form of Crohn disease that affects the lower part of the small intestine (the ileum) in populations of northern European descent. The most common variation, written as 3020insC or 1007fs, leads to the production of a NOD2 protein that is slightly shorter than normal. Other common variations change single amino acids in the NOD2 protein. It is unclear how these genetic changes increase the risk of developing Crohn disease. Studies suggest that changes in the NOD2 gene prevent the protein from recognizing bacteria, allowing these microbes to grow unchecked and invade cells that line the intestine. An abnormal immune response to these bacteria may contribute to chronic inflammation and the digestive problems characteristic of Crohn disease.

cancers - associated with the NOD2 gene

A few studies have suggested a possible association between changes in the NOD2 gene, particularly the common variation 3020insC, and the development of several types of cancer. Although some of these studies found an increased risk of cancer in people with a NOD2 gene variation, other research found no such association. It is unclear how changes in this gene might contribute to cancer risk.

other disorders - associated with the NOD2 gene

Several studies have considered variations in the NOD2 gene as a possible risk factor for a condition called graft-versus-host disease (GVHD). Graft-versus-host disease can occur following certain cancer treatments, such as allogeneic stem cell transplantation. This procedure, which is typically used to treat cancers of the blood and immune system, replaces a patient's diseased blood-forming cells (a type of stem cell) with stem cells from a healthy donor. If the donor's stem cells (the graft) recognize the patient's body (the host) as foreign, they may attack organs and tissues such as the liver, digestive system, and skin. Graft-versus-host disease is the term used to describe this potentially severe reaction.

A few studies have suggested that variations in the NOD2 gene influence the risk of developing severe complications of graft-versus-host disease following an allogeneic stem cell transplant. The presence of NOD2 gene variations in both the stem cell donor and the recipient is associated with the greatest risk of a severe reaction. However, other research has found no relationship between NOD2 gene changes and the risk of developing graft-versus-host disease.

Where is the NOD2 gene located?

Cytogenetic Location: 16q21

Molecular Location on chromosome 16: base pairs 50,693,581 to 50,733,081

(Homo sapiens Annotation Release 107, GRCh38.p2) (NCBI (

The NOD2 gene is located on the long (q) arm of chromosome 16 at position 21.

The NOD2 gene is located on the long (q) arm of chromosome 16 at position 21.

More precisely, the NOD2 gene is located from base pair 50,693,581 to base pair 50,733,081 on chromosome 16.

See How do geneticists indicate the location of a gene? ( in the Handbook.

Where can I find additional information about NOD2?

You and your healthcare professional may find the following resources about NOD2 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the NOD2 gene or gene products?

  • ACUG
  • BLAU
  • CARD15
  • caspase recruitment domain family, member 15
  • caspase recruitment domain protein 15
  • CD
  • IBD1
  • inflammatory bowel disease protein 1
  • LRR-containing protein
  • NOD2B
  • nucleotide-binding oligomerization domain containing 2

See How are genetic conditions and genes named? ( in the Handbook.

What glossary definitions help with understanding NOD2?

acids ; allogeneic ; allogeneic stem cell transplantation ; apoptosis ; autophagy ; bacteria ; cancer ; caspase ; cell ; chronic ; digestive ; digestive system ; domain ; epithelial ; gene ; graft-versus-host disease ; GVHD ; ileum ; immune response ; immune system ; infection ; inflammation ; inherited ; injury ; innate immunity ; intestine ; juvenile ; nucleotide ; protein ; sarcoidosis ; stem cells ; syndrome ; tissue ; white blood cells

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.


  • Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin Immunol. 2010 Mar;134(3):251-61. doi: 10.1016/j.clim.2009.05.005. Epub 2009 May 24. Review. (
  • Elmaagacli AH, Koldehoff M, Hindahl H, Steckel NK, Trenschel R, Peceny R, Ottinger H, Rath PM, Ross RS, Roggendorf M, Grosse-Wilde H, Beelen DW. Mutations in innate immune system NOD2/CARD 15 and TLR-4 (Thr399Ile) genes influence the risk for severe acute graft-versus-host disease in patients who underwent an allogeneic transplantation. Transplantation. 2006 Jan 27;81(2):247-54. (
  • Gasche C, Grundtner P. Genotypes and phenotypes in Crohn's disease: do they help in clinical management? Gut. 2005 Jan;54(1):162-7. Review. Erratum in: Gut. 2005 Mar;54(3):442. (
  • Gaya DR, Russell RK, Nimmo ER, Satsangi J. New genes in inflammatory bowel disease: lessons for complex diseases? Lancet. 2006 Apr 15;367(9518):1271-84. Review. (
  • Henckaerts L, Vermeire S. NOD2/CARD15 disease associations other than Crohn's disease. Inflamm Bowel Dis. 2007 Feb;13(2):235-41. Review. (
  • Holler E, Rogler G, Herfarth H, Brenmoehl J, Wild PJ, Hahn J, Eissner G, Schölmerich J, Andreesen R. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood. 2004 Aug 1;104(3):889-94. Epub 2004 Apr 15. (
  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001 May 31;411(6837):599-603. (
  • Hugot JP. CARD15/NOD2 mutations in Crohn's disease. Ann N Y Acad Sci. 2006 Aug;1072:9-18. Review. (
  • Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S, Fuji A, Yuasa T, Manki A, Sakurai Y, Nakajima M, Kobayashi H, Fujiwara I, Tsutsumi H, Utani A, Nishigori C, Heike T, Nakahata T, Miyachi Y. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood. 2005 Feb 1;105(3):1195-7. Epub 2004 Sep 30. (
  • Kutikhin AG. Role of NOD1/CARD4 and NOD2/CARD15 gene polymorphisms in cancer etiology. Hum Immunol. 2011 Oct;72(10):955-68. doi: 10.1016/j.humimm.2011.06.003. Epub 2011 Jul 13. Review. (
  • Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Häfner R, Chamaillard M, Zouali H, Thomas G, Hugot JP. CARD15 mutations in Blau syndrome. Nat Genet. 2001 Sep;29(1):19-20. (
  • NCBI Gene (
  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001 May 31;411(6837):603-6. (
  • Rogler G, Holler E. Can NOD2/CARD15 mutations predict intestinal graft-versus-host disease and aid our understanding of Crohn's disease? Nat Clin Pract Gastroenterol Hepatol. 2004 Dec;1(2):62-3. (
  • Strober W, Kitani A, Fuss I, Asano N, Watanabe T. The molecular basis of NOD2 susceptibility mutations in Crohn's disease. Mucosal Immunol. 2008 Nov;1 Suppl 1:S5-9. doi: 10.1038/mi.2008.42. Review. (
  • Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease. Mucosal Immunol. 2011 Sep;4(5):484-95. doi: 10.1038/mi.2011.29. Epub 2011 Jul 13. Review. (
  • Wang X, Kuivaniemi H, Bonavita G, Mutkus L, Mau U, Blau E, Inohara N, Nunez G, Tromp G, Williams CJ. CARD15 mutations in familial granulomatosis syndromes: a study of the original Blau syndrome kindred and other families with large-vessel arteritis and cranial neuropathy. Arthritis Rheum. 2002 Nov;46(11):3041-5. (


The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? ( in the Handbook.

Reviewed: July 2012
Published: February 8, 2016