Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

LPL

Reviewed February 2015

What is the official name of the LPL gene?

The official name of this gene is “lipoprotein lipase.”

LPL is the gene's official symbol. The LPL gene is also known by other names, listed below.

What is the normal function of the LPL gene?

The LPL gene provides instructions for making an enzyme called lipoprotein lipase. This enzyme is found primarily on the surface of cells that line tiny blood vessels (capillaries) within muscles and in fatty (adipose) tissue. Lipoprotein lipase plays a critical role in breaking down fat in the form of triglycerides, which are carried from various organs to the blood by molecules called lipoproteins.

Lipoprotein lipase breaks down triglycerides carried by two different types of lipoproteins, which bring fat to the bloodstream from different organs. Fat from the intestine, which is taken in from the diet, is transported to the bloodstream by lipoproteins called chylomicrons. Another type of lipoprotein called very low density lipoprotein (VLDL) carries triglycerides from the liver to the bloodstream. When lipoprotein lipase breaks down triglycerides, the fat molecules are used by the body as energy or stored in fatty tissue for later use.

How are changes in the LPL gene related to health conditions?

familial lipoprotein lipase deficiency - caused by mutations in the LPL gene

More than 220 mutations in the LPL gene have been found to cause familial lipoprotein lipase deficiency. This condition disrupts the normal breakdown of triglycerides in the body, resulting in an increase of these fats. The most common mutation in people of European ancestry replaces the protein building block (amino acid) glycine with the amino acid glutamic acid at position 188 in the enzyme (written as Gly188Glu or G188E). Mutations that cause familial lipoprotein lipase deficiency reduce or eliminate lipoprotein lipase activity, which prevents the enzyme from effectively breaking down triglycerides in the bloodstream. As a result, triglycerides attached to lipoproteins accumulate in the blood and tissues, leading to inflammation of the pancreas (pancreatitis), enlarged liver and spleen (hepatosplenomegaly), fatty deposits in the skin (eruptive xanthomas), and the other signs and symptoms of familial lipoprotein lipase deficiency.

other disorders - associated with the LPL gene

Certain variations in the LPL gene have been shown to influence the levels of fats in the bloodstream. The LPL gene variants likely result in the production of lipoprotein lipase enzymes with altered abilities to break down triglycerides. In some cases, the enzyme is overactive, resulting in low fat levels. In other cases, the enzyme is impaired, resulting in increased fat levels, a condition called hyperlipidemia. Individuals with hyperlipidemia are at greater than normal risk of developing atherosclerosis, a condition in which fatty deposits accumulate on artery walls. This fatty material hardens over time, eventually blocking the arteries and increasing the chance of having a heart attack or stroke. It is unclear how much of a role LPL gene variants play in the development of atherosclerosis, as a large number of genetic and environmental factors determine the risk of developing this complex condition.

Where is the LPL gene located?

Cytogenetic Location: 8p22

Molecular Location on chromosome 8: base pairs 19,939,070 to 19,967,258

The LPL gene is located on the short (p) arm of chromosome 8 at position 22.

The LPL gene is located on the short (p) arm of chromosome 8 at position 22.

More precisely, the LPL gene is located from base pair 19,939,070 to base pair 19,967,258 on chromosome 8.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about LPL?

You and your healthcare professional may find the following resources about LPL helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the LPL gene or gene products?

  • clearing factor lipase
  • diacylglycerol lipase
  • LIPD
  • postheparin lipase
  • triacylglycerol protein acylhydrolase

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding LPL?

acids ; amino acid ; arteries ; artery ; atherosclerosis ; breakdown ; capillaries ; chylomicrons ; deficiency ; enzyme ; familial ; fatty acids ; fatty tissue ; gene ; glutamic acid ; glycine ; heart attack ; hepatosplenomegaly ; inflammation ; intestine ; lipase ; lipid ; lipoprotein ; metabolism ; mutation ; oxidation ; pancreas ; pancreatitis ; protein ; tissue ; triacylglycerol ; triglycerides ; very low density lipoprotein ; VLDL

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

References

  • Benlian P, De Gennes JL, Foubert L, Zhang H, Gagné SE, Hayden M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med. 1996 Sep 19;335(12):848-54. Erratum in: N Engl J Med 1997 Feb 6;336(6):451. (http://www.ncbi.nlm.nih.gov/pubmed/8778602?dopt=Abstract)
  • Gilbert B, Rouis M, Griglio S, de Lumley L, Laplaud P. Lipoprotein lipase (LPL) deficiency: a new patient homozygote for the preponderant mutation Gly188Glu in the human LPL gene and review of reported mutations: 75 % are clustered in exons 5 and 6. Ann Genet. 2001 Jan-Mar;44(1):25-32. Review. (http://www.ncbi.nlm.nih.gov/pubmed/11334614?dopt=Abstract)
  • Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014 Jul;1841(7):919-33. doi: 10.1016/j.bbalip.2014.03.013. Epub 2014 Apr 8. Review. (http://www.ncbi.nlm.nih.gov/pubmed/24721265?dopt=Abstract)
  • Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl). 2002 Dec;80(12):753-69. Epub 2002 Oct 24. Review. (http://www.ncbi.nlm.nih.gov/pubmed/12483461?dopt=Abstract)
  • Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res. 2002 Aug 1;55(2):261-9. Review. (http://www.ncbi.nlm.nih.gov/pubmed/12123765?dopt=Abstract)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/4023)
  • Pirim D, Wang X, Radwan ZH, Niemsiri V, Hokanson JE, Hamman RF, Barmada MM, Demirci FY, Kamboh MI. Lipoprotein lipase gene sequencing and plasma lipid profile. J Lipid Res. 2014 Jan;55(1):85-93. doi: 10.1194/jlr.M043265. Epub 2013 Nov 9. (http://www.ncbi.nlm.nih.gov/pubmed/24212298?dopt=Abstract)
  • Tang W, Apostol G, Schreiner PJ, Jacobs DR Jr, Boerwinkle E, Fornage M. Associations of lipoprotein lipase gene polymorphisms with longitudinal plasma lipid trends in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circ Cardiovasc Genet. 2010 Apr;3(2):179-86. doi: 10.1161/CIRCGENETICS.109.913426. Epub 2010 Feb 11. (http://www.ncbi.nlm.nih.gov/pubmed/20150529?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: February 2015
Published: August 24, 2015