Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions About   Site Map   Contact Us
Home A service of the U.S. National Library of Medicine®
Printer-friendly version


Reviewed May 2010

What is the official name of the ERCC2 gene?

The official name of this gene is “excision repair cross-complementation group 2.”

ERCC2 is the gene's official symbol. The ERCC2 gene is also known by other names, listed below.

Read more about gene names and symbols on the About page.

What is the normal function of the ERCC2 gene?

The ERCC2 gene provides instructions for making a protein called XPD. This protein is an essential part (subunit) of a group of proteins known as the general transcription factor IIH (TFIIH) complex. The TFIIH complex has two major functions: it is involved in a process called gene transcription, and it helps repair damaged DNA.

Gene transcription is the first step in protein production. By controlling gene transcription, the TFIIH complex helps regulate the activity of many different genes. The XPD protein appears to stabilize the TFIIH complex. Studies suggest that the XPD protein works together with XPB, another protein in the TFIIH complex that is produced from the ERCC3 gene, to start (initiate) gene transcription.

The TFIIH complex also plays an important role in repairing damaged DNA. DNA can be damaged by ultraviolet (UV) rays from the sun and by toxic chemicals, radiation, and unstable molecules called free radicals. DNA damage occurs frequently, but normal cells are usually able to fix it before it can cause problems. One of the major mechanisms that cells use to fix DNA is known as nucleotide excision repair (NER). As part of this repair mechanism, the TFIIH complex separates the section of double-stranded DNA that surrounds the damage. The XPD protein helps with this process by acting as a helicase, which is an enzyme that attaches to particular regions of DNA and temporarily unwinds the two spiral strands. Once the damaged region has been exposed, other proteins snip out (excise) the abnormal section and replace the damaged area with the correct DNA.

How are changes in the ERCC2 gene related to health conditions?

trichothiodystrophy - caused by mutations in the ERCC2 gene

At least 20 mutations in the ERCC2 gene have been found to cause trichothiodystrophy. Mutations in this gene are the most common cause of the photosensitive form of the condition, which is characterized by an extreme sensitivity to UV rays from sunlight.

Studies suggest that the ERCC2 gene mutations responsible for trichothiodystrophy reduce the amount of functional TFIIH complex in cells. Without enough of this complex, cells cannot effectively repair DNA damage caused by UV radiation. These problems with DNA repair cause people with the photosensitive form of trichothiodystrophy to be extremely sensitive to sunlight. Other features of the condition, such as slow growth, intellectual disability, and brittle hair, probably result from problems with the transcription of genes needed for normal development before and after birth.

Unlike xeroderma pigmentosum (described below), trichothiodystrophy is not associated with an increased risk of skin cancer. Researchers are working to determine why some mutations in the ERCC2 gene affect a person's cancer risk and others do not.

xeroderma pigmentosum - caused by mutations in the ERCC2 gene

More than two dozen mutations in the ERCC2 gene have been identified in people with xeroderma pigmentosum. Mutations in this gene are the second most common cause of xeroderma pigmentosum in the United States.

The ERCC2 gene mutations responsible for xeroderma pigmentosum prevent the TFIIH complex from repairing damaged DNA effectively. As a result, abnormalities accumulate in DNA, causing cells to malfunction and eventually to become cancerous or die. These problems with DNA repair cause people with xeroderma pigmentosum to be extremely sensitive to UV rays from sunlight. When UV rays damage genes that control cell growth and division, cells can grow too fast and in an uncontrolled way. As a result, people with xeroderma pigmentosum have a greatly increased risk of developing cancer. These cancers occur most frequently in areas of the body that are exposed to the sun, such as the skin and eyes.

When xeroderma pigmentosum is caused by ERCC2 gene mutations, it is often associated with progressive neurological abnormalities. These nervous system problems include hearing loss, poor coordination, difficulty walking, movement problems, loss of intellectual function, difficulty swallowing and talking, and seizures. The neurological abnormalities are thought to result from a buildup of DNA damage, although the brain is not exposed to UV rays. Researchers suspect that other factors damage DNA in nerve cells. It is unclear why some people with xeroderma pigmentosum develop neurological abnormalities and others do not.

other disorders - caused by mutations in the ERCC2 gene

Rarely, mutations in the ERCC2 gene can cause features of both xeroderma pigmentosum and trichothiodystrophy in the same individual. This condition is known as xeroderma pigmentosum/trichothiodystrophy (XP/TTD) complex. ERCC2 gene mutations have also been identified in a few individuals with signs and symptoms of both xeroderma pigmentosum and another condition related to defective DNA repair called Cockayne syndrome. This combination of features is known as xeroderma pigmentosum/Cockayne syndrome (XP/CS) complex.

Researchers are uncertain how mutations in this single gene can cause several different disorders with a wide variety of signs and symptoms. Studies suggest that different ERCC2 gene mutations affect the stability and function of the TFIIH complex in different ways. Mutations also have varied effects on the interaction between the XPD protein and other proteins that make up the TFIIH complex. These variations may account for the different features of xeroderma pigmentosum, trichothiodystrophy, and XP/TTD and XP/CS complexes.

Where is the ERCC2 gene located?

Cytogenetic Location: 19q13.3

Molecular Location on chromosome 19: base pairs 45,351,391 to 45,370,646

(Homo sapiens Annotation Release 107, GRCh38.p2) (NCBIThis link leads to a site outside Genetics Home Reference.)

The ERCC2 gene is located on the long (q) arm of chromosome 19 at position 13.3.

The ERCC2 gene is located on the long (q) arm of chromosome 19 at position 13.3.

More precisely, the ERCC2 gene is located from base pair 45,351,391 to base pair 45,370,646 on chromosome 19.

See How do geneticists indicate the location of a gene? in the Handbook.

Where can I find additional information about ERCC2?

You and your healthcare professional may find the following resources about ERCC2 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the ERCC2 gene or gene products?

  • basic transcription factor 2 80 kDa subunit
  • BTF2 p80
  • COFS2
  • CXPD
  • DNA excision repair protein ERCC-2
  • DNA repair protein complementing XP-D cells
  • EM9
  • excision repair cross-complementing rodent repair deficiency, complementation group 2
  • MAG
  • MGC102762
  • MGC126218
  • MGC126219
  • TFIIH 80 kDa subunit
  • TFIIH basal transcription factor complex 80 kDa subunit
  • TFIIH basal transcription factor complex helicase subunit
  • TFIIH p80
  • TTD
  • xeroderma pigmentosum complementary group D
  • xeroderma pigmentosum group D-complementing protein
  • XPD

Where can I find general information about genes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding ERCC2?

References (11 links)


The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

Reviewed: May 2010
Published: February 8, 2016