Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

COL9A1

Reviewed January 2013

What is the official name of the COL9A1 gene?

The official name of this gene is “collagen, type IX, alpha 1.”

COL9A1 is the gene's official symbol. The COL9A1 gene is also known by other names, listed below.

What is the normal function of the COL9A1 gene?

The COL9A1 gene provides instructions for making part of a large molecule called type IX collagen. Collagens are a family of proteins that strengthen and support connective tissues, such as skin, bone, cartilage, tendons, and ligaments. In particular, type IX collagen is an important component of cartilage, which is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears.

Type IX collagen is made up of three proteins that are produced from three distinct genes: one α1(IX) chain, which is produced from the COL9A1 gene, one α2(IX) chain, which is produced from the COL9A2 gene, and one α3(IX) chain, which is produced from the COL9A3 gene. Type IX collagen is more flexible than other types of collagen molecules and is closely associated with type II collagen. Researchers believe that the flexible nature of type IX collagen allows it to act as a bridge that connects type II collagen with other cartilage components. Studies have shown that type IX collagen also interacts with the proteins produced from the MATN3 and COMP genes.

Does the COL9A1 gene share characteristics with other genes?

The COL9A1 gene belongs to a family of genes called COL (collagens). It also belongs to a family of genes called collagen proteoglycans (collagen proteoglycans). It also belongs to a family of genes called proteoglycans (proteoglycans).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genefamilies) in the Handbook.

How are changes in the COL9A1 gene related to health conditions?

multiple epiphyseal dysplasia - caused by mutations in the COL9A1 gene

At least one mutation in the COL9A1 gene has been found to cause dominant multiple epiphyseal dysplasia, a disorder of cartilage and bone development that primarily affects the ends of the long bones in the arms and legs (epiphyses). The identified mutation, called a splice-site mutation, involves the addition of one DNA building block (nucleotide) near an area of the gene called exon 8 (written as 1-bp ins, IVS8, T, +3). This mutation disrupts the way the gene's instructions are used to make the α1(IX) chain, resulting in a deletion of several protein building blocks (amino acids). It is not known how this mutation in COL9A1 causes the signs and symptoms of dominant multiple epiphyseal dysplasia.

Stickler syndrome - caused by mutations in the COL9A1 gene

At least two mutations in the COL9A1 gene have been found to cause the characteristic features of Stickler syndrome, including a distinctive facial appearance, eye abnormalities, hearing loss, and joint problems. Both mutations result in a premature stop signal in the instructions for making type IX collagen. The mutations are predicted to lead to the production of an abnormally short, nonfunctional version of the α1(IX) chain. Studies suggest that without this chain, functional collagen IX is not produced. A lack of type IX collagen disrupts the development of connective tissues throughout the body, resulting in the signs and symptoms of Stickler syndrome.

When the features of Stickler syndrome result from mutations in the COL9A1 gene, the condition is sometimes called type IV Sticker syndrome or autosomal recessive Stickler syndrome. (Autosomal recessive inheritance means two copies of the gene in each cell must be altered to cause the condition.)

Where is the COL9A1 gene located?

Cytogenetic Location: 6q13

Molecular Location on chromosome 6: base pairs 70,216,039 to 70,303,082

The COL9A1 gene is located on the long (q) arm of chromosome 6 at position 13.

The COL9A1 gene is located on the long (q) arm of chromosome 6 at position 13.

More precisely, the COL9A1 gene is located from base pair 70,216,039 to base pair 70,303,082 on chromosome 6.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about COL9A1?

You and your healthcare professional may find the following resources about COL9A1 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the COL9A1 gene or gene products?

  • alpha 1 type IX collagen
  • cartilage-specific short collagen
  • collagen IX, alpha-1 polypeptide
  • DJ149L1.1.2
  • FLJ40263
  • MED

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding COL9A1?

acids ; autosomal ; autosomal recessive ; cartilage ; cell ; collagen ; deletion ; DNA ; dysplasia ; exon ; gene ; inheritance ; joint ; molecule ; mutation ; nucleotide ; protein ; recessive ; splice-site mutation ; syndrome ; tissue

You may find definitions for these and many other terms in the Genetics Home Reference Glossary (http://ghr.nlm.nih.gov/glossary).

References

  • Blumbach K, Niehoff A, Paulsson M, Zaucke F. Ablation of collagen IX and COMP disrupts epiphyseal cartilage architecture. Matrix Biol. 2008 May;27(4):306-18. doi: 10.1016/j.matbio.2007.11.007. Epub 2007 Dec 3. (http://www.ncbi.nlm.nih.gov/pubmed/18191556?dopt=Abstract)
  • Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum Mutat. 2002 May;19(5):465-78. Review. (http://www.ncbi.nlm.nih.gov/pubmed/11968079?dopt=Abstract)
  • OMIM: COLLAGEN, TYPE IX, ALPHA-1 (http://omim.org/entry/120210)
  • Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perälä M, Carter L, Spector TD, Kolodziej L, Seppänen U, Glazar R, Królewski J, Latos-Bielenska A, Ala-Kokko L. A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet. 2001 Nov;69(5):969-80. Epub 2001 Sep 14. (http://www.ncbi.nlm.nih.gov/pubmed/11565064?dopt=Abstract)
  • Gene Review: Multiple Epiphyseal Dysplasia, Dominant (http://www.ncbi.nlm.nih.gov/books/NBK1123)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/1297)
  • Nikopoulos K, Schrauwen I, Simon M, Collin RW, Veckeneer M, Keymolen K, Van Camp G, Cremers FP, van den Born LI. Autosomal recessive Stickler syndrome in two families is caused by mutations in the COL9A1 gene. Invest Ophthalmol Vis Sci. 2011 Jul 1;52(7):4774-9. doi: 10.1167/iovs.10-7128. (http://www.ncbi.nlm.nih.gov/pubmed/21421862?dopt=Abstract)
  • Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, Suzuki H, Smets RM, Vanhoenacker F, Declau F, Van de Heyning P, Usami S. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet. 2006 Sep;79(3):449-57. Epub 2006 Jun 26. (http://www.ncbi.nlm.nih.gov/pubmed/16909383?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: January 2013
Published: October 27, 2014