Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions     A service of the U.S. National Library of Medicine®


Reviewed April 2015

What is the official name of the ASPA gene?

The official name of this gene is “aspartoacylase.”

ASPA is the gene's official symbol. The ASPA gene is also known by other names, listed below.

What is the normal function of the ASPA gene?

The ASPA gene provides instructions for making an enzyme called aspartoacylase. In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into aspartic acid (an amino acid that is a building block of many proteins) and another molecule called acetic acid.

The production and breakdown of NAA appears to be critical for maintaining the brain's white matter, which consists of nerve fibers surrounded by a myelin sheath. The myelin sheath is the covering that protects nerve fibers and promotes the efficient transmission of nerve impulses. The precise function of NAA is unclear. Researchers had suspected that it played a role in the production of the myelin sheath, but recent studies suggest that NAA does not have this function. The enzyme may instead be involved in the transport of water molecules out of nerve cells (neurons).

How are changes in the ASPA gene related to health conditions?

Canavan disease - caused by mutations in the ASPA gene

More than 80 mutations in the ASPA gene are known to cause Canavan disease, which is a rare inherited disorder that affects brain development. Researchers have described two major forms of this condition: neonatal/infantile Canavan disease, which is the most common and most severe form, and mild/juvenile Canavan disease. The ASPA gene mutations that cause the neonatal/infantile form severely impair the activity of aspartoacylase, preventing the breakdown of NAA and allowing this substance to build up to high levels in the brain. The mutations that cause the mild/juvenile form have milder effects on the enzyme's activity, leading to less accumulation of NAA.

An excess of NAA in the brain is associated with the signs and symptoms of Canavan disease. Studies suggest that if NAA is not broken down properly, the resulting chemical imbalance interferes with the formation of the myelin sheath as the nervous system develops. A buildup of NAA also leads to the progressive destruction of existing myelin sheaths. Nerves without this protective covering malfunction, which disrupts normal brain development.

While Canavan disease occurs in people of all ethnic backgrounds, it is most common in people of Ashkenazi (eastern and central European) Jewish heritage. Two specific ASPA gene mutations cause almost all cases of the disease in people of Ashkenazi Jewish descent. One of these mutations replaces the amino acid glutamic acid with the amino acid alanine at position 285 of the enzyme (written as Glu285Ala or E285A). This genetic change greatly reduces the amount of functional aspartoacylase. The other mutation, which is written as Tyr231Ter or Y231X, prematurely stops protein production and leads to an abnormally small, nonfunctional version of the enzyme.

A different ASPA gene mutation is most common in people who are not of Ashkenazi Jewish descent. This mutation substitutes the amino acid glutamic acid for the amino acid alanine at position 305 of aspartoacylase (written as Ala305Glu or A305E). This mutation also leads to the production of a nonfunctional version of the enzyme.

Where is the ASPA gene located?

Cytogenetic Location: 17p13.3

Molecular Location on chromosome 17: base pairs 3,474,110 to 3,499,406

The ASPA gene is located on the short (p) arm of chromosome 17 at position 13.3.

The ASPA gene is located on the short (p) arm of chromosome 17 at position 13.3.

More precisely, the ASPA gene is located from base pair 3,474,110 to base pair 3,499,406 on chromosome 17.

See How do geneticists indicate the location of a gene? ( in the Handbook.

Where can I find additional information about ASPA?

You and your healthcare professional may find the following resources about ASPA helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the ASPA gene or gene products?

  • ACY2
  • aminoacylase 2
  • aminoacylase II
  • ASP
  • N-acyl-L-aspartate amidohydrolase

See How are genetic conditions and genes named? ( in the Handbook.

What glossary definitions help with understanding ASPA?

alanine ; amino acid ; Ashkenazi Jewish ; Asp ; aspartic acid ; breakdown ; compound ; enzyme ; gene ; glutamic acid ; inherited ; juvenile ; L-aspartic acid ; leukodystrophy ; molecule ; mutation ; myelin sheath ; neonatal ; nervous system ; protein ; white matter

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.


  • Baslow MH. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci. 2003;21(3):185-90. Review. (
  • Bitto E, Bingman CA, Wesenberg GE, McCoy JG, Phillips GN Jr. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):456-61. Epub 2006 Dec 28. (
  • Guo F, Bannerman P, Mills Ko E, Miers L, Xu J, Burns T, Li S, Freeman E, McDonough JA, Pleasure D. Ablating N-acetylaspartate prevents leukodystrophy in a Canavan disease model. Ann Neurol. 2015 May;77(5):884-8. doi: 10.1002/ana.24392. Epub 2015 Mar 27. (
  • Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MA. Mutational analysis of aspartoacylase: implications for Canavan disease. Brain Res. 2007 May 7;1148:1-14. Epub 2007 Mar 3. (
  • Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MA. Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan's disease. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5221-6. Epub 2005 Mar 22. (
  • Namboodiri AM, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN. Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol. 2006 Jun 27;252(1-2):216-23. Epub 2006 May 2. Review. (
  • NCBI Gene (
  • Sommer A, Sass JO. Expression of aspartoacylase (ASPA) and Canavan disease. Gene. 2012 Sep 1;505(2):206-10. doi: 10.1016/j.gene.2012.06.036. Epub 2012 Jun 28. (
  • Tacke U, Olbrich H, Sass JO, Fekete A, Horvath J, Ziyeh S, Kleijer WJ, Rolland MO, Fisher S, Payne S, Vargiami E, Zafeiriou DI, Omran H. Possible genotype-phenotype correlations in children with mild clinical course of Canavan disease. Neuropediatrics. 2005 Aug;36(4):252-5. (
  • Zano S, Wijayasinghe YS, Malik R, Smith J, Viola RE. Relationship between enzyme properties and disease progression in Canavan disease. J Inherit Metab Dis. 2013 Jan;36(1):1-6. doi: 10.1007/s10545-012-9520-z. Epub 2012 Aug 1. Erratum in: J Inherit Metab Dis. 2013 Jan;36(1):159-60. (
  • Zeng BJ, Pastores GM, Leone P, Raghavan S, Wang ZH, Ribeiro LA, Torres P, Ong E, Kolodny EH. Mutation analysis of the aspartoacylase gene in non-Jewish patients with Canavan disease. Adv Exp Med Biol. 2006;576:165-73; discussion 361-3. (
  • Zeng BJ, Wang ZH, Torres PA, Pastores GM, Leone P, Raghavan SS, Kolodny EH. Rapid detection of three large novel deletions of the aspartoacylase gene in non-Jewish patients with Canavan disease. Mol Genet Metab. 2006 Sep-Oct;89(1-2):156-63. Epub 2006 Jul 18. (


The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? ( in the Handbook.

Reviewed: April 2015
Published: November 23, 2015