Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

AGPAT2

Reviewed January 2016

What is the official name of the AGPAT2 gene?

The official name of this gene is “1-acylglycerol-3-phosphate O-acyltransferase 2.”

AGPAT2 is the gene's official symbol. The AGPAT2 gene is also known by other names, listed below.

What is the normal function of the AGPAT2 gene?

The AGPAT2 gene provides instructions for making an enzyme that is found in many of the body's cells and tissues. It plays a critical role in the growth and development of adipocytes, which are cells that store fats for energy. Adipocytes are the major component of the body's fatty (adipose) tissue.

The AGPAT2 enzyme is part of a chemical pathway in many cells that produces two important types of fats (lipids): glycerophospholipids and triacylglycerols. Glycerophospholipids are the major component of cell membranes and are involved in chemical signaling within cells. Triacylglycerols (also known as triglycerides) are fat molecules that are stored in adipocytes for later conversion to energy.

The AGPAT2 enzyme is responsible for a particular chemical reaction in the production of these two types of lipids. Specifically, the enzyme helps convert a molecule called lysophosphatidic acid (LPA) to another molecule, phosphatidic acid (PA). Additional reactions convert phosphatidic acid to glycerophospholipids and triacylglycerols.

How are changes in the AGPAT2 gene related to health conditions?

congenital generalized lipodystrophy - caused by mutations in the AGPAT2 gene

At least 26 mutations in the AGPAT2 gene have been identified in people with congenital generalized lipodystrophy (also called Berardinelli-Seip congenital lipodystrophy) type 1. This rare condition is characterized by an almost total absence of adipose tissue and a very muscular appearance. A shortage of adipose tissue leads to multiple health problems, including high levels of triglycerides circulating in the bloodstream (hypertriglyceridemia) and diabetes mellitus.

The AGPAT2 gene mutations that cause congenital generalized lipodystrophy type 1 greatly reduce or eliminate the activity of the AGPAT2 enzyme. Studies suggest that a loss of this enzyme's activity reduces the production and storage of triacylglycerols in adipocytes, which prevents these cells from storing fats. A lack of enzyme activity may also reduce the levels of glycerophospholipids in adipocytes, which changes the structure of the cell membrane and disrupts normal signaling within these cells. All of these abnormalities prevent the body from storing fats normally in adipose tissue. The resulting lack of body fat underlies the varied signs and symptoms of congenital generalized lipodystrophy type 1.

Where is the AGPAT2 gene located?

Cytogenetic Location: 9q34.3

Molecular Location on chromosome 9: base pairs 136,673,143 to 136,687,459

(Homo sapiens Annotation Release 107, GRCh38.p2) (NCBI (http://www.ncbi.nlm.nih.gov/gene/10555))

The AGPAT2 gene is located on the long (q) arm of chromosome 9 at position 34.3.

The AGPAT2 gene is located on the long (q) arm of chromosome 9 at position 34.3.

More precisely, the AGPAT2 gene is located from base pair 136,673,143 to base pair 136,687,459 on chromosome 9.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about AGPAT2?

You and your healthcare professional may find the following resources about AGPAT2 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the AGPAT2 gene or gene products?

  • 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta)
  • 1-acyl-sn-glycerol-3-phosphate acyltransferase beta
  • 1-AGP acyltransferase 2
  • 1-AGPAT2
  • BSCL1
  • LPAAB
  • LPAAT-beta
  • lysophosphatidic acid acyltransferase-beta
  • PLCB_HUMAN

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding AGPAT2?

adipocytes ; adipose tissue ; cell ; cell membrane ; congenital ; diabetes ; diabetes mellitus ; differentiation ; enzyme ; gene ; hypertriglyceridemia ; lipodystrophy ; molecule ; phosphate ; tissue ; triglycerides

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

References

  • Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002 May;31(1):21-3. Epub 2002 Apr 22. (http://www.ncbi.nlm.nih.gov/pubmed/11967537?dopt=Abstract)
  • Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012 Aug;23(4):290-302. doi: 10.1097/MOL.0b013e328354fcf4. Review. (http://www.ncbi.nlm.nih.gov/pubmed/22777291?dopt=Abstract)
  • Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, Schaffer JE, Ory DS. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem. 2006 Apr 21;281(16):11082-9. Epub 2006 Feb 22. (http://www.ncbi.nlm.nih.gov/pubmed/16495223?dopt=Abstract)
  • Magré J, Delépine M, Van Maldergem L, Robert JJ, Maassen JA, Meier M, Panz VR, Kim CA, Tubiana-Rufi N, Czernichow P, Seemanova E, Buchanan CR, Lacombe D, Vigouroux C, Lascols O, Kahn CR, Capeau J, Lathrop M. Prevalence of mutations in AGPAT2 among human lipodystrophies. Diabetes. 2003 Jun;52(6):1573-8. (http://www.ncbi.nlm.nih.gov/pubmed/12765973?dopt=Abstract)
  • Magré J, Delépine M, Van Maldergem L, Robert JJ, Maassen JA, Meier M, Panz VR, Kim CA, Tubiana-Rufi N, Czernichow P, Seemanova E, Buchanan CR, Lacombe D, Vigouroux C, Lascols O, Kahn CR, Capeau J, Lathrop M. Prevalence of mutations in AGPAT2 among human lipodystrophies. Diabetes. 2003 Jun;52(6):1573-8. (http://www.ncbi.nlm.nih.gov/pubmed/12765973?dopt=Abstract)
  • Miranda DM, Wajchenberg BL, Calsolari MR, Aguiar MJ, Silva JM, Ribeiro MG, Fonseca C, Amaral D, Boson WL, Resende BA, De Marco L. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin Endocrinol (Oxf). 2009 Oct;71(4):512-7. doi: 10.1111/j.1365-2265.2009.03532.x. Epub 2009 Feb 18. (http://www.ncbi.nlm.nih.gov/pubmed/19226263?dopt=Abstract)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/10555)
  • Patni N, Garg A. Congenital generalized lipodystrophies--new insights into metabolic dysfunction. Nat Rev Endocrinol. 2015 Sep;11(9):522-34. doi: 10.1038/nrendo.2015.123. Epub 2015 Aug 4. Review. (http://www.ncbi.nlm.nih.gov/pubmed/26239609?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: January 2016
Published: February 8, 2016