Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions     A service of the U.S. National Library of Medicine®

Leigh syndrome

Reviewed October 2011

What is Leigh syndrome?

Leigh syndrome is a severe neurological disorder that typically arises in the first year of life. This condition is characterized by progressive loss of mental and movement abilities (psychomotor regression) and typically results in death within a couple of years, usually due to respiratory failure. A small number of individuals develop symptoms in adulthood or have symptoms that worsen more slowly.

The first signs of Leigh syndrome seen in infancy are usually vomiting, diarrhea, and difficulty swallowing (dysphagia) that leads to eating problems. These problems often result in an inability to grow and gain weight at the expected rate (failure to thrive). Severe muscle and movement problems are common in Leigh syndrome. Affected individuals may develop weak muscle tone (hypotonia), involuntary muscle contractions (dystonia), and problems with movement and balance (ataxia). Loss of sensation and weakness in the limbs (peripheral neuropathy), common in people with Leigh syndrome, may also make movement difficult.

Several other features may occur in people with Leigh syndrome. Many affected individuals develop weakness or paralysis of the muscles that move the eyes (ophthalmoparesis); rapid, involuntary eye movements (nystagmus); or degeneration of the nerves that carry information from the eyes to the brain (optic atrophy). Severe breathing problems are common in people with Leigh syndrome, and these problems can worsen until they cause acute respiratory failure. Some affected individuals develop hypertrophic cardiomyopathy, which is a thickening of the heart muscle that forces the heart to work harder to pump blood. In addition, a substance called lactate can build up in the body, and excessive amounts are often found in the blood, cerebrospinal fluid, or urine of people with Leigh syndrome.

The signs and symptoms of Leigh syndrome are caused in part by patches of damaged tissue (lesions) that develop in the brains of people with this condition. A procedure called magnetic resonance imaging (MRI) reveals characteristic lesions in certain regions of the brain and the brainstem (the part of the brain that is connected to the spinal cord). These regions include the basal ganglia, which help control movement; the cerebellum, which controls the ability to balance and coordinates movement; and the brainstem, which controls functions such as swallowing, breathing, hearing, and seeing. The brain lesions are often accompanied by loss of the myelin coating around nerves (demyelination), which reduces the ability of the nerves to activate muscles used for movement or relay sensory information back to the brain.

How common is Leigh syndrome?

Leigh syndrome affects at least 1 in 40,000 newborns. The condition is more common in certain populations. For example, the condition occurs in approximately 1 in 2,000 newborns in the Saguenay Lac-Saint-Jean region of Quebec, Canada.

What are the genetic changes related to Leigh syndrome?

Leigh syndrome can be caused by mutations in one of over 30 different genes. In humans, most genes are found in DNA in the cell's nucleus, called nuclear DNA. However, some genes are found in DNA in specialized structures in the cell called mitochondria. This type of DNA is known as mitochondrial DNA (mtDNA). While most people with Leigh syndrome have a mutation in nuclear DNA, about 20 to 25 percent have a mutation in mtDNA.

Most genes associated with Leigh syndrome are involved in the process of energy production in mitochondria. Mitochondria use oxygen to convert the energy from food into a form cells can use. Five protein complexes, made up of several proteins each, are involved in this process, called oxidative phosphorylation. The complexes are named complex I, complex II, complex III, complex IV, and complex V. During oxidative phosphorylation, the protein complexes drive the production of ATP, the cell's main energy source, through a step-by-step transfer of negatively charged particles called electrons. Many of the gene mutations associated with Leigh syndrome affect proteins in complexes I, II, IV, or V or disrupt the assembly of these complexes. These mutations reduce or eliminate the activity of one or more of these complexes, which can lead to Leigh syndrome.

Disruption of complex IV, also called cytochrome c oxidase or COX, is the most common cause of Leigh syndrome. The most frequently mutated gene in COX-deficient Leigh syndrome is called SURF1. This gene, which is found in nuclear DNA, provides instructions for making a protein that helps assemble the COX protein complex (complex IV). The COX protein complex, which is involved in the last step of electron transfer in oxidative phosphorylation, provides the energy that will be used in the next step of the process to generate ATP. Mutations in the SURF1 gene typically lead to an abnormally short SURF1 protein that is broken down in cells, resulting in the absence of functional SURF1 protein. The loss of this protein reduces the formation of normal COX complexes, which impairs mitochondrial energy production.

Other nuclear DNA mutations associated with Leigh syndrome decrease the activity of other oxidative phosphorylation protein complexes or affect additional steps related to energy production. For example, Leigh syndrome can be caused by mutations in genes that form the pyruvate dehydrogenase complex. These mutations lead to a shortage of pyruvate dehydrogenase, an enzyme involved in mitochondrial energy production.

The most common mtDNA mutation in Leigh syndrome affects the MT-ATP6 gene, which provides instructions for making a piece of complex V, also known as the ATP synthase protein complex. Using the energy provided by the other protein complexes, the ATP synthase complex generates ATP. MT-ATP6 gene mutations, found in 10 to 20 percent of people with Leigh syndrome, block the generation of ATP. Other mtDNA mutations associated with Leigh syndrome decrease the activity of other oxidative phosphorylation protein complexes or lead to reduced mitochondrial protein synthesis, all of which impair mitochondrial energy production.

Although the exact mechanism is unclear, researchers believe that impaired oxidative phosphorylation can lead to cell death because of decreased energy available in the cell. Certain tissues that require large amounts of energy, such as the brain, muscles, and heart, seem especially sensitive to decreases in cellular energy. Cell death in the brain likely causes the characteristic lesions seen in Leigh syndrome, which contribute to the signs and symptoms of the condition. Cell death in other sensitive tissues may also contribute to the features of Leigh syndrome.

Related Gene(s)

Changes in these genes are associated with Leigh syndrome.

  • COX10
  • COX15
  • MT-ATP6
  • MT-ND1
  • MT-ND2
  • MT-ND3
  • MT-ND4
  • MT-ND5
  • MT-ND6
  • MT-TK
  • MT-TV
  • MT-TW
  • NDUFA1
  • NDUFA10
  • NDUFA11
  • NDUFA2
  • NDUFS1
  • NDUFS2
  • NDUFS3
  • NDUFS4
  • NDUFS7
  • NDUFS8
  • NDUFV1
  • PDHA1
  • PDHB
  • PDSS2
  • SDHA
  • SURF1
  • TACO1

How do people inherit Leigh syndrome?

Leigh syndrome can have different inheritance patterns. It is most commonly inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. This pattern of inheritance applies to genes contained in nuclear DNA. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

In about 20 to 25 percent of people with Leigh syndrome, the condition is inherited in a mitochondrial pattern, which is also known as maternal inheritance. This pattern of inheritance applies to genes contained in mtDNA. Because egg cells, but not sperm cells, contribute mitochondria to the developing embryo, children can only inherit disorders resulting from mtDNA mutations from their mother. These disorders can appear in every generation of a family and can affect both males and females, but fathers do not pass traits associated with changes in mtDNA to their children. Occasionally, mutations in mtDNA occur spontaneously, and there is no history of Leigh syndrome in the family.

In a small number of affected individuals with mutations in nuclear DNA, Leigh syndrome is inherited in an X-linked recessive pattern. The condition has this pattern of inheritance when the mutated gene is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Where can I find information about diagnosis or management of Leigh syndrome?

These resources address the diagnosis or management of Leigh syndrome and may include treatment providers.

  • Gene Review: Mitochondrial DNA-Associated Leigh Syndrome and NARP (
  • Gene Review: Nuclear Gene-Encoded Leigh Syndrome Overview (
  • Genetic Testing Registry: Leigh's disease (
  • Genetic Testing Registry: Leigh syndrome, French Canadian type (
  • Genetic Testing Registry: Leigh Syndrome (mtDNA mutation) (
  • Genetic Testing Registry: Leigh Syndrome (nuclear DNA mutation) (

You might also find information on the diagnosis or management of Leigh syndrome in Educational resources and Patient support.

General information about the diagnosis ( and management ( of genetic conditions is available in the Handbook. Read more about genetic testing (, particularly the difference between clinical tests and research tests (

To locate a healthcare provider, see How can I find a genetics professional in my area? ( in the Handbook.

Where can I find additional information about Leigh syndrome?

You may find the following resources about Leigh syndrome helpful. These materials are written for the general public.

You may also be interested in these resources, which are designed for healthcare professionals and researchers.

What other names do people use for Leigh syndrome?

  • infantile subacute necrotizing encephalopathy
  • juvenile subacute necrotizing encephalopathy
  • Leigh disease
  • Leigh's disease
  • subacute necrotizing encephalomyelopathy

For more information about naming genetic conditions, see the Genetics Home Reference Condition Naming Guidelines ( and How are genetic conditions and genes named? ( in the Handbook.

What if I still have specific questions about Leigh syndrome?

Ask the Genetic and Rare Diseases Information Center (

What glossary definitions help with understanding Leigh syndrome?

acute ; ataxia ; ATP ; atrophy ; autosomal ; autosomal recessive ; brainstem ; cardiomyopathy ; cell ; cerebellum ; charged particles ; chromosome ; deficiency ; dehydrogenase ; demyelination ; difficulty swallowing ; DNA ; dysphagia ; dystonia ; egg ; electron ; embryo ; encephalopathy ; enzyme ; failure to thrive ; gene ; hypertrophic ; hypotonia ; imaging ; inherit ; inheritance ; inherited ; involuntary ; juvenile ; lactate ; magnetic resonance imaging ; maternal ; maternal inheritance ; mitochondria ; muscle tone ; mutation ; neurological ; neuropathy ; nucleus ; nystagmus ; optic atrophy ; oxidase ; oxidative phosphorylation ; oxygen ; pattern of inheritance ; peripheral ; peripheral neuropathy ; phosphorylation ; protein ; psychomotor ; recessive ; regression ; respiratory ; sex chromosomes ; sperm ; syndrome ; synthesis ; tissue ; X-linked recessive

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.


  • Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol. 2008 Oct;39(4):223-35. doi: 10.1016/j.pediatrneurol.2008.07.013. Review. (
  • Gene Review: Mitochondrial DNA-Associated Leigh Syndrome and NARP (
  • Pecina P, Capková M, Chowdhury SK, Drahota Z, Dubot A, Vojtísková A, Hansíková H, Houst'ková H, Zeman J, Godinot C, Houstek J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta. 2003 Sep 1;1639(1):53-63. (
  • Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency. Hum Mutat. 2001 May;17(5):374-81. (
  • Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996 Mar;39(3):343-51. (
  • Sgarbi G, Baracca A, Lenaz G, Valentino LM, Carelli V, Solaini G. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA. Biochem J. 2006 May 1;395(3):493-500. (
  • Uziel G, Moroni I, Lamantea E, Fratta GM, Ciceri E, Carrara F, Zeviani M. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry. 1997 Jul;63(1):16-22. (
  • Yao J, Shoubridge EA. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum Mol Genet. 1999 Dec;8(13):2541-9. (


The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? ( in the Handbook.

Reviewed: October 2011
Published: February 1, 2016