Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

Gyrate atrophy of the choroid and retina

(often shortened to gyrate atrophy)
Reviewed August 2009

What is gyrate atrophy?

Gyrate atrophy of the choroid and retina, which is often shortened to gyrate atrophy, is an inherited disorder characterized by progressive vision loss. People with this disorder have an ongoing loss of cells (atrophy) in the retina, which is the specialized light-sensitive tissue that lines the back of the eye, and in a nearby tissue layer called the choroid. During childhood, they begin experiencing nearsightedness (myopia), difficulty seeing in low light (night blindness), and loss of side (peripheral) vision. Over time, their field of vision continues to narrow, resulting in tunnel vision. Many people with gyrate atrophy also develop clouding of the lens of the eyes (cataracts). These progressive vision changes lead to blindness by about the age of 50.

Most people with gyrate atrophy have no symptoms other than vision loss, but some have additional features of the disorder. Occasionally, newborns with gyrate atrophy develop excess ammonia in the blood (hyperammonemia), which may lead to poor feeding, vomiting, seizures, or coma. Neonatal hyperammonemia associated with gyrate atrophy generally responds quickly to treatment and does not recur after the newborn period.

Gyrate atrophy usually does not affect intelligence; however, abnormalities may be observed in brain imaging or other neurological testing. In some cases, mild to moderate intellectual disability is associated with gyrate atrophy.

Gyrate atrophy may also cause disturbances in the nerves connecting the brain and spinal cord to muscles and sensory cells (peripheral nervous system). In some people with the disorder these abnormalities lead to numbness, tingling, or pain in the hands or feet, while in others they are detectable only by electrical testing of the nerve impulses.

In some people with gyrate atrophy, a particular type of muscle fibers (type II fibers) break down over time. While this muscle abnormality usually causes no symptoms, it may result in mild weakness.

How common is gyrate atrophy?

More than 150 individuals with gyrate atrophy have been identified; approximately one third are from Finland.

What genes are related to gyrate atrophy?

Mutations in the OAT gene cause gyrate atrophy. The OAT gene provides instructions for making the enzyme ornithine aminotransferase. This enzyme is active in the energy-producing centers of cells (mitochondria), where it helps break down a molecule called ornithine. Ornithine is involved in the urea cycle, which processes excess nitrogen (in the form of ammonia) that is generated when protein is broken down by the body. In addition to its role in the urea cycle, ornithine participates in several reactions that help ensure the proper balance of protein building blocks (amino acids) in the body. This balance is important because a specific sequence of amino acids is required to build each of the many different proteins needed for the body's functions. The ornithine aminotransferase enzyme helps convert ornithine into another molecule called pyrroline-5-carboxylate (P5C). P5C can be converted into the amino acids glutamate and proline.

OAT gene mutations that cause gyrate atrophy result in a reduced amount of functional ornithine aminotransferase enzyme. A shortage of this enzyme impedes the conversion of ornithine into P5C. As a result, excess ornithine accumulates in the blood (hyperornithinemia), and less P5C than normal is produced. It is not clear how these changes result in the specific signs and symptoms of gyrate atrophy. Researchers have suggested that a deficiency of P5C may interfere with the function of the retina. It has also been proposed that excess ornithine may suppress the production of a molecule called creatine. Creatine is needed for many tissues in the body to store and use energy properly. It is involved in providing energy for muscle contraction, and it is also important in nervous system functioning.

Related Gene(s)

Changes in this gene are associated with gyrate atrophy of the choroid and retina.

  • OAT

How do people inherit gyrate atrophy?

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Where can I find information about diagnosis or management of gyrate atrophy?

These resources address the diagnosis or management of gyrate atrophy and may include treatment providers.

  • Baby's First Test (http://www.babysfirsttest.org/newborn-screening/conditions/hyperornithine-with-gyrate-deficiency)
  • Genetic Testing Registry: Ornithine aminotransferase deficiency (http://www.ncbi.nlm.nih.gov/gtr/conditions/C0599035)

You might also find information on the diagnosis or management of gyrate atrophy in Educational resources and Patient support.

General information about the diagnosis (http://ghr.nlm.nih.gov/handbook/consult/diagnosis) and management (http://ghr.nlm.nih.gov/handbook/consult/treatment) of genetic conditions is available in the Handbook. Read more about genetic testing (http://ghr.nlm.nih.gov/handbook/testing), particularly the difference between clinical tests and research tests (http://ghr.nlm.nih.gov/handbook/testing/researchtesting).

To locate a healthcare provider, see How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

Where can I find additional information about gyrate atrophy?

You may find the following resources about gyrate atrophy helpful. These materials are written for the general public.

You may also be interested in these resources, which are designed for healthcare professionals and researchers.

What other names do people use for gyrate atrophy?

  • HOGA
  • hyperornithinemia with gyrate atrophy of choroid and retina
  • OAT deficiency
  • OKT deficiency
  • ornithine aminotransferase deficiency
  • ornithine-delta-aminotransferase deficiency
  • ornithine keto acid aminotransferase deficiency
  • Ornithinemia with gyrate atrophy

For more information about naming genetic conditions, see the Genetics Home Reference Condition Naming Guidelines (http://ghr.nlm.nih.gov/ConditionNameGuide) and How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What if I still have specific questions about gyrate atrophy?

Ask the Genetic and Rare Diseases Information Center (https://rarediseases.info.nih.gov/gard).

What glossary definitions help with understanding gyrate atrophy?

acids ; ammonia ; atrophy ; autosomal ; autosomal recessive ; carboxylate ; cell ; choroid ; coma ; contraction ; creatine ; deficiency ; disability ; enzyme ; gene ; hyperammonemia ; imaging ; inherited ; mitochondria ; molecule ; myopia ; nearsightedness ; neonatal ; nervous system ; neurological ; peripheral ; peripheral nervous system ; proline ; protein ; recessive ; retina ; sensory cells ; tissue ; urea

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

References

  • Cleary MA, Dorland L, de Koning TJ, Poll-The BT, Duran M, Mandell R, Shih VE, Berger R, Olpin SE, Besley GT. Ornithine aminotransferase deficiency: diagnostic difficulties in neonatal presentation. J Inherit Metab Dis. 2005;28(5):673-9. (http://www.ncbi.nlm.nih.gov/pubmed/16151897?dopt=Abstract)
  • Fleury M, Barbier R, Ziegler F, Mohr M, Caron O, Dollfus H, Tranchant C, Warter JM. Myopathy with tubular aggregates and gyrate atrophy of the choroid and retina due to hyperornithinaemia. J Neurol Neurosurg Psychiatry. 2007 Jun;78(6):656-7. Epub 2006 Nov 6. (http://www.ncbi.nlm.nih.gov/pubmed/17088329?dopt=Abstract)
  • Heinänen K, Näntö-Salonen K, Komu M, Erkintalo M, Heinonen OJ, Pulkki K, Valtonen M, Nikoskelainen E, Alanen A, Simell O. Muscle creatine phosphate in gyrate atrophy of the choroid and retina with hyperornithinaemia--clues to pathogenesis. Eur J Clin Invest. 1999 May;29(5):426-31. (http://www.ncbi.nlm.nih.gov/pubmed/10354199?dopt=Abstract)
  • Kaiser-Kupfer MI, Caruso RC, Valle D, Reed GF. Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy. Arch Ophthalmol. 2004 Jul;122(7):982-4. (http://www.ncbi.nlm.nih.gov/pubmed/15249361?dopt=Abstract)
  • Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol. 2002 Feb;120(2):146-53. (http://www.ncbi.nlm.nih.gov/pubmed/11831916?dopt=Abstract)
  • Mashima YG, Weleber RG, Kennaway NG, Inana G. Genotype-phenotype correlation of a pyridoxine-responsive form of gyrate atrophy. Ophthalmic Genet. 1999 Dec;20(4):219-24. (http://www.ncbi.nlm.nih.gov/pubmed/10617919?dopt=Abstract)
  • Mitchell GA, Brody LC, Looney J, Steel G, Suchanek M, Dowling C, Der Kaloustian V, Kaiser-Kupfer M, Valle D. An initiator codon mutation in ornithine-delta-aminotransferase causing gyrate atrophy of the choroid and retina. J Clin Invest. 1988 Feb;81(2):630-3. (http://www.ncbi.nlm.nih.gov/pubmed/3339136?dopt=Abstract)
  • Peltola KE, Jääskeläinen S, Heinonen OJ, Falck B, Näntö-Salonen K, Heinänen K, Simell O. Peripheral nervous system in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology. 2002 Sep 10;59(5):735-40. (http://www.ncbi.nlm.nih.gov/pubmed/12221166?dopt=Abstract)
  • Peltola KE, Näntö-Salonen K, Heinonen OJ, Jääskeläinen S, Heinänen K, Simell O, Nikoskelainen E. Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase. Ophthalmology. 2001 Apr;108(4):721-9. (http://www.ncbi.nlm.nih.gov/pubmed/11297489?dopt=Abstract)
  • Santinelli R, Costagliola C, Tolone C, D'Aloia A, D'Avanzo A, Prisco F, Perrone L, del Giudice EM. Low-protein diet and progression of retinal degeneration in gyrate atrophy of the choroid and retina: a twenty-six-year follow-up. J Inherit Metab Dis. 2004;27(2):187-96. (http://www.ncbi.nlm.nih.gov/pubmed/15159649?dopt=Abstract)
  • Shenoi A, L N, Christopher R. Hyperornithinemia associated with gyrate atrophy of the choroid and retina in a child with myopia. Indian Pediatr. 2001 Aug;38(8):914-8. (http://www.ncbi.nlm.nih.gov/pubmed/11521006?dopt=Abstract)
  • Valtonen M, Näntö-Salonen K, Jääskeläinen S, Heinänen K, Alanen A, Heinonen OJ, Lundbom N, Erkintalo M, Simell O. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. J Inherit Metab Dis. 1999 Dec;22(8):855-66. (http://www.ncbi.nlm.nih.gov/pubmed/10604138?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: August 2009
Published: August 24, 2015