Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

Familial hypobetalipoproteinemia

Reviewed August 2012

What is familial hypobetalipoproteinemia?

Familial hypobetalipoproteinemia (FHBL) is a disorder that impairs the body's ability to absorb and transport fats. This condition is characterized by low levels of a fat-like substance called cholesterol in the blood. The severity of signs and symptoms experienced by people with FHBL vary widely. The most mildly affected individuals have few problems with absorbing fats from the diet and no related signs and symptoms. Many individuals with FHBL develop an abnormal buildup of fats in the liver called hepatic steatosis or fatty liver. In more severely affected individuals, fatty liver may progress to chronic liver disease (cirrhosis). Individuals with severe FHBL have greater difficulty absorbing fats as well as fat-soluble vitamins such as vitamin E and vitamin A. This difficulty in fat absorption leads to excess fat in the feces (steatorrhea). In childhood, these digestive problems can result in an inability to grow or gain weight at the expected rate (failure to thrive).

How common is familial hypobetalipoproteinemia?

FHBL is estimated to occur in 1 in 1,000 to 3,000 individuals.

What genes are related to familial hypobetalipoproteinemia?

Most cases of FHBL are caused by mutations in the APOB gene. This gene provides instructions for making two versions of the apolipoprotein B protein: a short version called apolipoprotein B-48 and a longer version known as apolipoprotein B-100. Both of these proteins are components of lipoproteins, which transport fats and cholesterol in the blood.

Most APOB gene mutations that lead to FHBL cause both versions of apolipoprotein B to be abnormally short. The severity of the condition largely depends on the length of these two versions of apolipoprotein B. Severely shortened versions cannot partner with lipoproteins and transport fats and cholesterol. Proteins that are only slightly shortened retain some function but partner less effectively with lipoproteins. Generally, the signs and symptoms of FHBL are worse if both versions of apolipoprotein B are severely shortened. Mild or no signs and symptoms result when the proteins are only slightly shortened. All of these protein changes lead to a reduction of functional apolipoprotein B. As a result, the transportation of dietary fats and cholesterol is decreased or absent. A decrease in fat transport reduces the body's ability to absorb fats and fat-soluble vitamins from the diet.

Although APOB gene mutations are responsible for most cases of FHBL, mutations in a few other genes account for a small number of cases. Some people with FHBL do not have identified mutations in any of these genes. Changes in other, unidentified genes are likely involved in this condition.

Related Gene(s)

Changes in these genes are associated with familial hypobetalipoproteinemia.

  • ANGPTL3
  • APOB
  • PCSK9

How do people inherit familial hypobetalipoproteinemia?

This condition is inherited in an autosomal codominant pattern. Codominance means that copies of the gene from both parents are active (expressed), and both copies influence the genetic trait. In FHBL, a change in one copy of the APOB gene in each cell can cause the condition, but changes in both copies of the gene cause more severe health problems.

Where can I find information about diagnosis or management of familial hypobetalipoproteinemia?

These resources address the diagnosis or management of familial hypobetalipoproteinemia and may include treatment providers.

  • Genetic Testing Registry: Hypobetalipoproteinemia, familial, 2 (http://www.ncbi.nlm.nih.gov/gtr/conditions/C1857970)
  • Genetic Testing Registry: Hypobetalipoproteinemia, familial, associated with apob32 (http://www.ncbi.nlm.nih.gov/gtr/conditions/C1862596)

You might also find information on the diagnosis or management of familial hypobetalipoproteinemia in Educational resources and Patient support.

General information about the diagnosis (http://ghr.nlm.nih.gov/handbook/consult/diagnosis) and management (http://ghr.nlm.nih.gov/handbook/consult/treatment) of genetic conditions is available in the Handbook. Read more about genetic testing (http://ghr.nlm.nih.gov/handbook/testing), particularly the difference between clinical tests and research tests (http://ghr.nlm.nih.gov/handbook/testing/researchtesting).

To locate a healthcare provider, see How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

Where can I find additional information about familial hypobetalipoproteinemia?

You may find the following resources about familial hypobetalipoproteinemia helpful. These materials are written for the general public.

You may also be interested in these resources, which are designed for healthcare professionals and researchers.

What other names do people use for familial hypobetalipoproteinemia?

  • FHBL
  • hypobetalipoproteinemia

For more information about naming genetic conditions, see the Genetics Home Reference Condition Naming Guidelines (http://ghr.nlm.nih.gov/ConditionNameGuide) and How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What if I still have specific questions about familial hypobetalipoproteinemia?

Ask the Genetic and Rare Diseases Information Center (https://rarediseases.info.nih.gov/gard).

What glossary definitions help with understanding familial hypobetalipoproteinemia?

apolipoprotein ; autosomal ; cell ; cholesterol ; chronic ; cirrhosis ; codominance ; digestive ; expressed ; failure to thrive ; familial ; fatty liver ; feces ; gene ; hepatic ; inherited ; protein ; soluble ; steatorrhea ; trait ; vitamins

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

References

  • Cariou B, Ouguerram K, Zaïr Y, Guerois R, Langhi C, Kourimate S, Benoit I, Le May C, Gayet C, Belabbas K, Dufernez F, Chétiveaux M, Tarugi P, Krempf M, Benlian P, Costet P. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2009 Dec;29(12):2191-7. doi: 10.1161/ATVBAHA.109.194191. Epub 2009 Sep 17. (http://www.ncbi.nlm.nih.gov/pubmed/19762784?dopt=Abstract)
  • Di Leo E, Magnolo L, Bertolotti M, Bourbon M, Carmo Pereira S, Pirisi M, Calandra S, Tarugi P. Variable phenotypic expression of homozygous familial hypobetalipoproteinaemia due to novel APOB gene mutations. Clin Genet. 2008 Sep;74(3):267-73. doi: 10.1111/j.1399-0004.2008.01023.x. Epub 2008 May 19. (http://www.ncbi.nlm.nih.gov/pubmed/18492086?dopt=Abstract)
  • Fasano T, Cefalù AB, Di Leo E, Noto D, Pollaccia D, Bocchi L, Valenti V, Bonardi R, Guardamagna O, Averna M, Tarugi P. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2007 Mar;27(3):677-81. Epub 2006 Dec 14. (http://www.ncbi.nlm.nih.gov/pubmed/17170371?dopt=Abstract)
  • Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic hypocholesterolaemic lipid disorders and apolipoprotein B metabolism. Crit Rev Clin Lab Sci. 2005;42(5-6):515-45. Review. (http://www.ncbi.nlm.nih.gov/pubmed/16390683?dopt=Abstract)
  • Martín-Campos JM, Roig R, Mayoral C, Martinez S, Martí G, Arroyo JA, Julve J, Blanco-Vaca F. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin Chim Acta. 2012 Mar 22;413(5-6):552-5. doi: 10.1016/j.cca.2011.11.020. Epub 2011 Nov 29. (http://www.ncbi.nlm.nih.gov/pubmed/22155345?dopt=Abstract)
  • Noto D, Cefalù AB, Valenti V, Fayer F, Pinotti E, Ditta M, Spina R, Vigna G, Yue P, Kathiresan S, Tarugi P, Averna MR. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler Thromb Vasc Biol. 2012 Mar;32(3):805-9. doi: 10.1161/ATVBAHA.111.238766. Epub 2012 Jan 12. (http://www.ncbi.nlm.nih.gov/pubmed/22247256?dopt=Abstract)
  • Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci. 2005 Jun;62(12):1372-8. Review. (http://www.ncbi.nlm.nih.gov/pubmed/15818469?dopt=Abstract)
  • Tarugi P, Averna M, Di Leo E, Cefalù AB, Noto D, Magnolo L, Cattin L, Bertolini S, Calandra S. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis. 2007 Dec;195(2):e19-27. Epub 2007 Jun 14. Review. (http://www.ncbi.nlm.nih.gov/pubmed/17570373?dopt=Abstract)
  • Tarugi P, Averna M. Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem. 2011;54:81-107. Review. (http://www.ncbi.nlm.nih.gov/pubmed/21874758?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: August 2012
Published: September 1, 2015