Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions     A service of the U.S. National Library of Medicine®

Centronuclear myopathy

Reviewed November 2015

What is centronuclear myopathy?

Centronuclear myopathy is a condition characterized by muscle weakness (myopathy) and wasting (atrophy) in the skeletal muscles, which are the muscles used for movement. The severity of centronuclear myopathy varies among affected individuals, even among members of the same family.

People with centronuclear myopathy begin experiencing muscle weakness at any time from birth to early adulthood. The muscle weakness slowly worsens over time and can lead to delayed development of motor skills, such as crawling or walking; muscle pain during exercise; and difficulty walking. Some affected individuals may need wheelchair assistance as the muscles atrophy and weakness becomes more severe. In rare instances, the muscle weakness improves over time.

Some people with centronuclear myopathy experience mild to severe breathing problems related to the weakness of muscles needed for breathing. People with centronuclear myopathy may have droopy eyelids (ptosis) and weakness in other facial muscles, including the muscles that control eye movement. People with this condition may also have foot abnormalities, a high arch in the roof of the mouth (high-arched palate), and abnormal side-to-side curvature of the spine (scoliosis). Rarely, individuals with centronuclear myopathy have a weakened heart muscle (cardiomyopathy), disturbances in nerve function (neuropathy), or intellectual disability.

A key feature of centronuclear myopathy is the displacement of the nucleus in muscle cells, which can be viewed under a microscope. Normally the nucleus is found at the edges of the rod-shaped muscle cells, but in people with centronuclear myopathy the nucleus is located in the center of these cells. How the change in location of the nucleus affects muscle cell function is unknown.

How common is centronuclear myopathy?

Centronuclear myopathy is a rare condition; its exact prevalence is unknown.

What genes are related to centronuclear myopathy?

Centronuclear myopathy is most often caused by mutations in the DNM2, BIN1, or TTN gene. The proteins produced from the DNM2 and BIN1 genes are involved in endocytosis, a process that brings substances into the cell. The protein produced from the BIN1 gene plays an additional role in the formation of tube-like structures called transverse tubules (or T tubules), which are found within the membrane of muscle fibers. These tubules help transmit the electrical impulses necessary for normal muscle tensing (contraction) and relaxation. The protein produced from the DNM2 gene also regulates the actin cytoskeleton, which makes up the muscle fiber's structural framework. DNM2 and BIN1 gene mutations lead to abnormal muscle fibers that cannot contract and relax normally, resulting in muscle weakness.

The TTN gene provides instructions for making a protein called titin that is an essential component of muscle fiber structures called sarcomeres. Sarcomeres are the basic units of muscle contraction; they are made of proteins that generate the mechanical force needed for muscles to contract. TTN gene mutations decrease or alter titin's activity in muscle fibers. It is unclear how these mutations lead to centronuclear myopathy, but it is likely that the altered protein cannot interact with other proteins in the sarcomere, leading to dysfunction of the sarcomere. Abnormal sarcomeres prevent muscle fibers from contracting and relaxing normally, resulting in muscle weakness.

Some people with centronuclear myopathy do not have identified mutations in the DNM2, BIN1, or TTN genes. Mutations in other genes associated with this condition are found in a small percentage of cases. Some males with signs and symptoms of severe centronuclear myopathy may have a condition called X-linked myotubular myopathy, which is similar to centronuclear myopathy, and is often considered a subtype of the condition, but has a different genetic cause. In some people with centronuclear myopathy, the cause of the disorder is unknown. Researchers are looking for additional genes that are associated with centronuclear myopathy.

Related Gene(s)

Changes in these genes are associated with centronuclear myopathy.

  • BIN1
  • CCDC78
  • DNM2
  • RYR1
  • SPEG
  • TTN

How do people inherit centronuclear myopathy?

When centronuclear myopathy is caused by mutations in the DNM2 gene, it is inherited in an autosomal dominant pattern, which means one copy of the altered DNM2 gene in each cell is sufficient to cause the disorder. Rarely, BIN1 gene mutations that are inherited in an autosomal dominant pattern can cause centronuclear myopathy.

Centronuclear myopathy caused by TTN gene mutations and most cases caused by BIN1 gene mutations are inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other cases of centronuclear myopathy that are not caused by these genes are typically inherited in an autosomal recessive manner, although some follow an autosomal dominant pattern.

Where can I find information about diagnosis or management of centronuclear myopathy?

These resources address the diagnosis or management of centronuclear myopathy and may include treatment providers.

  • Genetic Testing Registry: Autosomal recessive centronuclear myopathy (
  • Genetic Testing Registry: Myopathy, centronuclear (
  • Genetic Testing Registry: Myopathy, centronuclear, 1 (
  • Genetic Testing Registry: Myopathy, centronuclear, 4 (
  • Genetic Testing Registry: Myopathy, centronuclear, 5 (

You might also find information on the diagnosis or management of centronuclear myopathy in Educational resources and Patient support.

General information about the diagnosis ( and management ( of genetic conditions is available in the Handbook. Read more about genetic testing (, particularly the difference between clinical tests and research tests (

To locate a healthcare provider, see How can I find a genetics professional in my area? ( in the Handbook.

Where can I find additional information about centronuclear myopathy?

You may find the following resources about centronuclear myopathy helpful. These materials are written for the general public.

You may also be interested in these resources, which are designed for healthcare professionals and researchers.

What other names do people use for centronuclear myopathy?

  • CNM
  • myopathy, centronuclear

For more information about naming genetic conditions, see the Genetics Home Reference Condition Naming Guidelines ( and How are genetic conditions and genes named? ( in the Handbook.

What if I still have specific questions about centronuclear myopathy?

Ask the Genetic and Rare Diseases Information Center (

What glossary definitions help with understanding centronuclear myopathy?

actin ; atrophy ; autosomal ; autosomal dominant ; autosomal recessive ; cardiomyopathy ; cell ; contraction ; cytoskeleton ; disability ; endocytosis ; gene ; inherited ; motor ; muscle cell ; muscle cells ; neuropathy ; nucleus ; palate ; prevalence ; protein ; ptosis ; recessive ; sarcomere ; scoliosis ; wasting

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.


  • Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, Talabere T, Viola M, Swanson LC, Haliloğlu G, Talim B, Yau KS, Allcock RJ, Laing NG, Perrella MA, Beggs AH. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet. 2014 Aug 7;95(2):218-26. doi: 10.1016/j.ajhg.2014.07.004. Epub 2014 Jul 31. (
  • Böhm J, Biancalana V, Malfatti E, Dondaine N, Koch C, Vasli N, Kress W, Strittmatter M, Taratuto AL, Gonorazky H, Laforêt P, Maisonobe T, Olivé M, Gonzalez-Mera L, Fardeau M, Carrière N, Clavelou P, Eymard B, Bitoun M, Rendu J, Fauré J, Weis J, Mandel JL, Romero NB, Laporte J. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain. 2014 Dec;137(Pt 12):3160-70. doi: 10.1093/brain/awu272. Epub 2014 Sep 25. (
  • Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC, Soemedi R, Vasli N, Iannaccone ST, Shieh PB, Shur N, Dennison JM, Lawlor MW, Laporte J, Markianos K, Fairbrother WG, Granzier H, Beggs AH. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013 Oct 1;81(14):1205-14. doi: 10.1212/WNL.0b013e3182a6ca62. Epub 2013 Aug 23. (
  • Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci. 2014 Dec 19;6:339. doi: 10.3389/fnagi.2014.00339. eCollection 2014. Review. (
  • Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis. 2008 Sep 25;3:26. doi: 10.1186/1750-1172-3-26. Review. (
  • Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, Joshi S, Xu J, Peng W, Beggs AH, Li JZ, Burmeister M, Dowling JJ. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012 Aug 10;91(2):365-71. doi: 10.1016/j.ajhg.2012.06.012. Epub 2012 Jul 19. (
  • Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007 Sep;39(9):1134-9. Epub 2007 Aug 5. (
  • Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010 Apr;20(4):223-8. doi: 10.1016/j.nmd.2010.01.014. Epub 2010 Feb 23. Review. (
  • Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, Kennerson M, Nicholson G, Biancalana V, Ilkovski B, Flanigan KM, Arbuckle S, Malladi C, Robinson P, Vucic S, Mayer M, Romero NB, Urtizberea JA, García-Bragado F, Guicheney P, Bitoun M, Carlier RY, North KN. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord. 2010 Apr;20(4):229-37. doi: 10.1016/j.nmd.2010.02.016. Epub 2010 Mar 12. (
  • Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, Müller CR, Ndondo A, Cloke V, Cullup T, Bertini E, Boennemann C, Straub V, Quinlivan R, Dowling JJ, Al-Sarraj S, Treves S, Abbs S, Manzur AY, Sewry CA, Muntoni F, Jungbluth H. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010 Nov;68(5):717-26. doi: 10.1002/ana.22119. (


The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? ( in the Handbook.

Reviewed: November 2015
Published: February 1, 2016